The creation of three-dimensional concentration and temperature surfacesin the combustion chamber of the boiler PK-39 of Aksu power plant

  • А.С. Аскарова IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • С.А. Болегеновa IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • В.Ю. Максимов IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • А.Н. Aлдияровa IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • Ж.К. Шортaнбaевa IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Aрыстaн IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty

Abstract

The study aims to examine the formation of harmful components during the combustion of pulverized coal dust in the volume of the combustion chamber of the boiler.Based on the numerical solution of the system of equations of convective heat and mass transfer, taking into account the kinetics of chemical reactions, two-phase flow, nonlinear effects of convection and radiation heat transfer methods and three-dimensional modeling, it is necessary to identify the formation of carbon monoxide gas throughout the volume of the combustion chamber, in its main sections and at the exit.The research results will be used to generate recommendations for optimization of existing technologies for burning low-grade coal fuel to Kazakhstani fields, with the aim of improving process efficiency by burning fuel in real power plants with the most efficient energy and minimal harmful impact on the environment. The results of computational experiments can be used to find the best design and layout solutions when designing new and redesigning the existing furnace industrial boiler, in which fuel energy is used high-ash coal.

References

1 Askarova A.S., Bolegenova S.A., Lavrisheva E.I., Loktionova I.V. Numerical Modelling оf Furnace Processes At The Combustion оf High- Ash Ekibastuz Coal // Thermophysics and aeromechanics. –Vol. 9. – №4. – 2002. – P. 559-569.

2 Askarova, A., Karpenko, E., Lavrishcheva, Ye., Messerle, V., Ustimenko, A. Plasma-supported coal combustion in boiler furnace // IEEE Transactions on Plasma Science. – Vol. 35, Issue 6, 2007. – P. 1607-1616.

3 Smoot L.D. Pulverized Coal Diffusion Flames: A perspective through the modeling // Works of 18th Symposium on Com-bustion. – Oxford, 1981. – Р. 1185-1202.

4 Бухмaн С.В., Вулис JI.A. О темперaтуре, скорости и времени сгорaния угольных пылинок //Труды Институтa энергетики AН Кaз. ССР. – Aлмa-Aтa: Изд. AН КaзССР, 1958.– С. 61-76.

5 Askarova A.S., Bolegenova S.A., Bolegenova S., Bekmukhamet A., Maximov V.Yu., Beketayeva M.T. Numerical experi-menting of combustion in the real boiler of CHP // International Journal of Mechanics. – ISSN: 1998-4448. – Vol. 7, Issue 3, 2013. – Р. 343-352.

6 Askarova A.S., Bekmukhamet A., Bolegenova S.A., Beketayeva M.T., Maximov Yu.V., Ospanova Sh.S., Gabitova Z.K. Numerical modeling of turbulence characteristics of burning process of the solid fuel in BKZ-420-140-7c combustion chamber // International Journal of Mechanics. – ISSN: 1998-4448. – Vol. 8, 2014. – P. 112-122.

7 Müller H. Numerische Berechnung dreidimensionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR–Verfahrens und der Kohleverbrennung // Fortschritt–Berichte VDI-Verlag. – №268, 1992. – 158 s.

8 Leithner R. Energy Conversion Processes with Intrinsic CO2 Separation // Transactions of the Society for Mining, Metal-lurgy and Exploration. – Vol. 18, 2005.– Р. 135-145.

9 Askarova, A.S., Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., Maksimov, V.Yu. Numerical Simulation of the Coal Combustion Process Initiated by a Plasma Source // Journal of Thermophysics and Aeromechanics. – Vol. 21, Issue 6, 2014. – P. 747-754.

10 Askarova, A., Bolegenova, S., Maximov V. et al. Numerical Modeling of Pulverized Coal Combustion at Thermal Power Plant Boilers // Journal of Thermal Science. –Vol. 24, Issue 3, 2015. – P. 275-282.

11 Askarova A.S., Karpenko E.I., Messerle V.E. et al. Plasma enhancement of combustion of solid fuels // Journal of High Energy Chemistry. – Vol. 40, Issue: 2, 2006. – P. 111-118.

12 Askarova A.S., Karpenko E.I., Karpenko Yu.E. et al. Mathematical modeling of the processes of solid fuel ignition and combustion at combustors of the power boilers // 7-th International Fall Seminar on Propellants, Explosives and Pyrotechnics. Theory and Practice of Energetic Materials. – China, 2007. – Vol. 7. – P. 672-683.

13 Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence. – London: Academic Press, 1972. – 470 p.

14 Lockwood F., Shah N. An improved flux model for calculation of radiation heat transfer in combustion chambers // ASME– AIChE Heat transfer Conf.: ASME–Paper. – Salt Lake City, 1976. – P. 2-7.

15 Askarova A., Messerle V., Ustimenko A., Nagibin A. Pulverized coal torch combustion in a furnace with plasma-coal sys¬tem // Thermophysics and Aeromechanics. – Vol.7, Issue 3, 2010. – P. 435-444.

16 Aлияров Б.К., Aлияровa М.Б. Сжигaние кaзaхстaнских углей нa ТЭС и нa крупных котельных: опыт и перспективы. – Aлмaты, 2011. – 306 с.
Published
2018-03-08
How to Cite
АСКАРОВА, А.С. et al. The creation of three-dimensional concentration and temperature surfacesin the combustion chamber of the boiler PK-39 of Aksu power plant. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 59, n. 4, p. 4-11, mar. 2018. ISSN 1563-0315. Available at: <http://bph.kaznu.kz/index.php/zhuzhu/article/view/486>. Date accessed: 25 sep. 2018.
Section
Thermal Physics and Theoretical Thermal Engineering

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.