First principle calculation of the structural and electronic properties of graphane

  • D.G. Batryshev Laboratoty of engineering profile, National Nanotechnology Open Laboratory, al-Farabi Kazakh National university, Almaty, Kazakhstan
  • Ye. Yerlanuly Laboratoty of engineering profile, National Nanotechnology Open Laboratory, al-Farabi Kazakh National university, Almaty, Kazakhstan
  • T.S. Ramazanov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • M.T. Gabdullin NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • B.K. Abdykadyrov NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • G.S. Amirbekova Laboratoty of engineering profile al-Farabi Kazakh National university, Almaty, Kazakhstan
  • R.A. Daineko NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan


In this work, a first principle calculation of structural and electronic properties of graphane by density functional theory (DFT) and Hartree-Fock (HF) approximation is considered.On the basis of this hybrid method, quantum-chemical calculations of the minimum energy and bandgap widths of boat-1 and boat-2 types of graphane were carried out. It was found that after optimization of graphane structure (boat-1 and boat-2) the absolute values of the cohesive energy of the atoms exceed the known literary data, which indicates the finding of a more stable structure. After optimization, the structural parameters of graphane boat-2 have been significantly changed, than the boat-1 type, perhaps because the boat-1 type has a more stable structure. Although, the calculations of electronic properties show that the values of the band gap width for both types of graphane were almost unchanged and they still are wide-gap semiconductors that can be used in electronics to create various sensors and transistors.


1. Sluiter M.H.F. and Kawazoe Y. Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene // Phys. Rev. B. – 2003. – Vol. 68. – P.085410.
2. Elias D.C., Nair R.R., Mohiuddin T.M.G., Morozov S.V., Blake P., Halsall M.P. et. al. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane // Science. – 2009. – Vol. 323, iss.5914. – P. 610-613.
3. Tan S.M., Sofer Z., Pumera M. Biomarkers Detection on Hydrogenated Graphene Surfaces: Towards Applications of Graphane in Biosensing // Electroanalysis. – 2013. – Vol. 25, №3. – Р. 703-705.
4. Seah T.H., Poh H.L., Chua C.K., Sofer Z., Pumera M. Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene // Electroanalysis. – 2014. – Vol. 26, №1. – Р. 62-68.
5. Gharekhanlou B., Tousaki S.B., Khorasani S. Bipolar transistor based on graphane. // Phys. Conf. Ser. – 2010. – Vol. 248. – P.012061.
6. Savchenko A: Transforming graphene // Sci. – 2009. – Vol. 323. – P.589.
7. Srinivas G., Zhu Y.W., Piner R., Skipper N., Ellerby M., Ruoff R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity // Carbon. –2010.–Vol. 48, №. 3.–P. 630.
8. Ilyin A.M., Guseinov N.R., Nemkaeva R.R., Tsyganov I.A., Theoretical and experimental study of graphene-like materials // Nanomaterials and Energy. – 2012. – Vol.1. – P.111-114.
9. Zhou Q.X., Ju W.W., Yong Y.L., Su X.Y., Li X.H., Fu. Z.B., Wang C.Y., Effect of H-vacancy defect on the adsorption of CO and NO on graphane: A DFT study // Applied surface science. – 2017. – Vol.420. –P. 720-725.
10. Sofo J.O., Chaudhari A.S., Barber G.D., Graphane: A two-dimensional hydrocarbon // Phys. Rev. B – 2007. – Vol.75, №15 – Р. 153401.
11. Rosas J.J.H., Gutierrez R.E.R., Escobedo-Morales A., Anota E.C., First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide // Journal of Molecular Modeling. – 2011. – Vol.17, №5. – P. 1133-1139.
12. He C., Sun L.Z., Zhang C.X., Jiao N., Zhang K.W., Zong J. Structure, stability and electronic properties of tricycle type graphene // Phys Status Solidi (RRL). Rapid Research Letters. – 2012. – Vol. 6. – P.427.
13. Zhou C., Chen S., Lou J., Wang J., Yang Q., LiuCh., Huang D. andZhu T., Graphene’s cousin: the present and future of graphane // Nano scale Research Letters. –2014.–Vol. 9. –P. 26.
14. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. – 1996 – Vol.77. – P. 3865-3868.
15. Monkhorst H.J. and Pack J.D. Special points for Brillouin-zone integrations // Physical Review B. – 1976. – Vol.13. – P. 5188.

1. M.H.F. Sluiter and Y. Kawazoe, Phys. Rev. B 68, 085410, (2003).
2. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall et. al, Science 323, 610, (2009). doi: 10.1126/science.1167130.
3. S.M. Tan, Z. Sofer and M. Pumera, Electroanalysis 25, 3, 703-705, (2013).
4. T.H. Seah, H.L. Poh, C.K. Chua, Z. Sofer, and M. Pumera, Electroanalysis 26, 1, 62-68, (2014).
5. B. Gharekhanlou, S.B. Tousaki, and S. Khorasani, Phys. Conf. Ser 248, 012061, (2010).
6. A. Savchenko, Sci 323, 589, (2009).
7. G. Srinivas, Y.W. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff, Carbon 48, 3, 630, (2010).
8. A.M. Ilyin, N.R. Guseinov, R.R. Nemkaeva, and I.A. Tsyganov, Nanomaterials and Energy 1, 111-114, (2012).
9. Q.X. Zhou, W.W. Ju, Y.L. Yong, X.Y. Su, X.H. Li, Z.B. Fu, and C.Y. Wang, Applied surface science 420, 720-725, (2017).
10. J.O. Sofo and A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 15, 153401, (2007).
11. J.J.H. Rosas, R.E.R. Gutierrez, A. Escobedo-Morales, and E.C. Anota, J. of Molecular Modeling 17, 5, 1133-1139, (2011).
12. C. He, L.Z. Sun, C.X. Zhang, N. Jiao, K.W. Zhang, and J. Zong, Phys Status Solidi (RRL) -Rapid Research Letters 6, 427, (2012).
13. C. Zhou, S. Chen, J. Lou, J. Wang, Q. Yang, Ch. Liu, D. Huang and T. Zhu, Nanoscale Research Letters 9, 26, (2014).
14. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868, (1996).
15. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188, (1976).
How to Cite
BATRYSHEV, D.G. et al. First principle calculation of the structural and electronic properties of graphane. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 62, n. 3, p. 34-39, apr. 2018. ISSN 1563-0315. Available at: <>. Date accessed: 20 apr. 2018.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.