Ghost scalar field in neutron star

  • A. Aringazin Institute of Basic Research, L.N. Gumilev Eurasian National University, Astana, Kazakhstan
  • V. Dzhunushaliev Institute of Basic Research, L.N. Gumilev Eurasian National University, Astana, IETP, Department of Theoretical and Nuclear Physics, al-Farabi Kazakh National University, Almaty, Kazakhstan; Institute of physical and technical sciences problems and materials science of the National Academy of Sciences of the Kyrgyz Republic, Bishkek, Kyrgyzstan
  • V. Folomeev Institute of physical and technical sciences problems and materials science of the National Academy of Sciences of the Kyrgyz Republic, Bishkek, Kyrgyzstan

Abstract

The model of a neutron star containing a ghost scalar field is considered. The neutron fluid is modelled by a realistic Sly equation of state applicable for a description of matter at large energies and pressures typical for central regions of neutron stars. Two forms of the scalar field (massless and with a potential energy) are considered, for which the cases with trivial and nontrivial spacetime wormhole-like topologies are studied. The system of ordinary differential equations describing the distribution of the neutron fluid, gravitational and scalar fields is derived. By solving this system numerically, we demonstrate the influence of the presence of the ghost scalar field on the mass-radius relation of neutron stars and their internal structure. It is shown that the distribution of the total density of the configurations under consideration changes substantively depending on the properties of the scalar field. The values of free parameters of the system, for which one can obtain the best agreement of the model with the current observational astronomical data, are determined.

References

1. Amendola L. and Tsujikawa S. Dark energy: theory and observations. – Cambridge: England: Cambridge University Press, 2010. - 491 p.
2. Perlmutter S., Turner M.S. and White M.J. Constraining dark energy with SNe Ia and large scale structure // Phys. Rev. Lett. -1999. –Vol. 83. –P. 670-673.
3. Bennett C.L. et al. [WMAP Collaboration] First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results // Astrophys. J. Suppl. -2003. –Vol.148. –P. 1-27.
4. Sullivan M. et al. SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three Year Data with Other Probes // Astrophys. J. -2011. –Vol. 737:102. – 47 p.
5. Ade P. A. R. et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters // Astron. Astrophys. -2016. –Vol. 594:A13. - 63 p.
6. Visser M. Lorentzian wormholes: From Einstein to Hawking. -New York: Woodbury, 1996. -412 p.
7. Armendariz-Picon C. On a class of stable, traversable Lorentzian wormholes in classical general relativity // Phys. Rev. -2002. –Vol. D65:104010. – 22 p.
8. Sushkov S. V. and Kim S.W. Wormholes supported by the kink-like configuration of a scalar field // Classical Quantum Gravity. -2002. –Vol. 19. –P. 4909-4922.
9. Lemos J.P.S., Lobo F.S.N., and de Oliveira S.Q. Morris-Thorne wormholes with a cosmological constant // Phys. Rev. -2003. –Vol. D68:064004. – 49 p.
10. Kardashev N.S., Novikov I.D., and Shatskiy A.A. Astrophysics of Wormholes // Int. J. Mod. Phys. -2007. –Vol. D16. –P. 909-926.
11. Gonzalez J.A., Guzman F.S., and Sarbach O.Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis // Classical Quantum Gravity. -2009. –Vol.26:015010. – 12 p.
12. Bronnikov K.A., Fabris J.C., and Zhidenko A. On the stability of scalar-vacuum space-times // Eur. Phys. J. -2011. –Vol. C71:1791. -11 p.
13. Lobo F.S.N. Phantom energy traversable wormholes // Phys. Rev. D -2005. –Vol. 7:1084011. -9 p.
14. Lobo F.S.N. Wormholes, Warp Drives and Energy Conditions // Fundam. Theor. Phys. -2017. –Vol. 189. - 303 p.
15. Dzhunushaliev V., Folomeev V., Kleihaus B. and Kunz J. A Star Harbouring a Wormhole at its Core // J. Cosmol. Astropart. Phys. -2011. -Vol. 1104:031. -19 p.
16. Dzhunushaliev V., Folomeev V., Kleihaus B. and Kunz J. Mixed neutron star-plus-wormhole systems: Equilibrium configurations // Phys. Rev. -2012. -Vol. D85:124028. -14 p.
17. Charalampidis E., Ioannidou T., Kleihaus B. and Kunz J. Wormholes Threaded by Chiral Fields // Phys. Rev. -2013. -Vol. D87:084069. -19 p.
18. Dzhunushaliev V., Folomeev V., Hoffmann C., Kleihaus B. and Kunz J. Boson Stars with Nontrivial Topology // Phys. Rev. - 2014. - Vol. D90:124038. - 18 p.
19. Haensel P., Potekhin A. Y. Analytical representations of unified equations of state of neutron-star matter // Astron. Astrophys. -2004. -Vol. 428. -P.191-197.
20. Ozel F., Baym G., Guver T. Astrophysical Measurement of the Equation of State of Neutron Star Matter // Phys. Rev. -2010. -Vol. D82:101301. -4 p.

References
1. L. Amendola and S. Tsujikawa, Dark energy: theory and observations (Cambridge: England: Cambridge University Press, 2010), 491 p.
2. S. Perlmutter, M.S. Turner and M.J. White, Phys. Rev. Lett. 8, 670-673, (1999).
3. C.L. Bennett et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 1-27, (2003).
4. M. Sullivan et al. Astrophys. J. 737, 102-149, (2011).
5. P.A.R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13-A76, (2016).
6. M. Visser, Lorentzian wormholes: From Einstein to Hawking (New York: Woodbury, 1996), 412 p.
7. C. Armendariz-Picon, Phys. Rev. D 65, 104010, (2002).
8. S.V. Sushkov and S.W. Kim, Classical Quantum Gravity, 19, 4909-4922, (2002).
9. J.P.S. Lemos, F.S.N. Lobo, and S.Q. de Oliveira, Phys. Rev. D 68, 064004, (2003).
10. N.S. Kardashev, I.D. Novikov, and A.A. Shatskiy, Int. J. Mod. Phys. D 16, 909-926, (2007).
11. J.A .Gonzalez, F.S. Guzman, and O. Sarbach, Classical Quantum Gravity 26, 15010, (2009).
12. K.A. Bronnikov, J.C. Fabris, and A. Zhidenko, Eur. Phys. J. C 71, 1791, (2011).
13. F.S.N. Lobo, Phys. Rev. D 7, 1084011, (2005).
14. F.S.N. Lobo, Fundam. Theor. Phys. 189, 303, (2017).
15. V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, J. Cosmol. Astropart. Phys. 1104, 031, (2011).
16. V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, Phys. Rev. D 85, 124028, (2012).
17. E. Charalampidis, T. Ioannidou, B. Kleihaus and J. Kunz, Phys. Rev. D 87, 084069, (2013).
18. V. Dzhunushaliev, V. Folomeev, C. Hoffmann, B. Kleihaus and J. Kunz, Phys. Rev. D 90, 124038, (2014).
19. P. Haensel and A.Y. Potekhin, Astron. Astrophys. 428, 191-197, (2004).
20. F. Ozel, G. Baym, and T.Guver, Phys. Rev. D 82, 101301, (2010).
Published
2018-04-03
How to Cite
ARINGAZIN, A.; DZHUNUSHALIEV, V.; FOLOMEEV, V.. Ghost scalar field in neutron star. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 62, n. 3, p. 52-58, apr. 2018. ISSN 1563-0315. Available at: <http://bph.kaznu.kz/index.php/zhuzhu/article/view/564>. Date accessed: 22 july 2018.
Section
Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.