Growth of copper nanoparticles by modified magnetron sputtering

  • M. Slamia National Nanolaboratory of Open Type, Al-Farabi KazNU, Almaty, Kazakhstan
  • R. Zhumadilov National Nanolaboratory of Open Type, Al-Farabi KazNU, Almaty, Kazakhstan
  • M.K. Dosbolayev National Nanolaboratory of Open Type, Al-Farabi KazNU, Almaty, Kazakhstan
  • O.A. Yertayev National Nanolaboratory of Open Type, Al-Farabi KazNU, Almaty, Kazakhstan
  • Т.S. Ramazanov National Nanolaboratory of Open Type, Al-Farabi KazNU, Almaty, Kazakhstan


Study of nanomaterials have received considerable attention due to their unique properties and numerous applications in different fields. Metallic nanoparticles are of great interest due to their excellent chemical, physical and catalytic properties. Copper nanoparticles attracted a lot of attention because of their well-known properties, such as high electrical and thermal conductivity, antibacterial and antifungal effects, high catalytic activity, etc. Cu nanoparticles were considered cost-effective in compare with other noble metals, such as Ag, Au and Pt.There are various methods for the synthesis of copper nanoparticles, such as chemical reduction, microemulsion method, electrolytic synthesis, sol-gel method, vacuum vapor deposition, etc.The most simple but effective way of obtaining nano and microparticles is the magnetron sputtering method. Each method presents its own shortcomings. In this paper the dependence of the copper nanoparticles growth on the gas discharge parameters obtained by magnetron sputtering method are investigated. As a result of experimental work, it was revealed that the synthesis of copper nanoparticles is influenced by various parameters, such as gas pressure in chamber and discharge current. The obtained samples were analyzed by scanning electron microscopy (SEM). The Cu nanoparticles have a spherical shape and have a diameter from 36 nm to 300 nm.


1 W.T. Lai, C.J. Hwang, A.T. Wang, J.C. Yau, J.H. Liao, L.H. Chen, K. Adachi, and S.Okamoto, Proc. of the Intern. Symposium on Dry Process. Japan: Nagoya, Institute of Electrical Engineers, 6, 109-110 (2006).

2 M. Thieme, R. Frenzel, S. Schmidt, F. Simon, A. Henning, H. Worch, K. Lunkwitz, and D. Scharnweber, Advanced engineering materials, 3 (9), 691–695 (2001).

3 M. Shiratani, H. Kawasaki, T. Fukuzawa, T. Yoshioka, Y. Ueda, S. Singh and Y. Watanabe, J. Appl. Phys., 79, 104–109 (1996).

4 H. Kersten, H. Deutsch, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen and R. Hippler, Contrib. Plasma Phys., 41, 598–609 (2001).

5 J. Shikha, N. Niharika and D. Vijay, Advances in Applied Science Research, 6(6), 171–180 (2005).

6 M. Imran Din & R. Rehan, Analytical Letters, 50 (1), 50–62 (2017).

7 A.M.R. Galletti, C. Antonetti, M. Marracci, F. Piccinelli, and B. Tellini, Applied Surface Science, 280, 610–618 (2013).

8 M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D. Jimenez de Aberasturi, I. Ruiz de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak and M. Mahmoudi, Trends in Biotechnology, 30 (10), 499–511 (2013).

9 L. Wang, C. Hu, L. Shao, International Journal of Nanomedicine, 12, 1227–1249 (2017).

10 H. Hahn and R.S. Averback, Journal of Applied Physics, 67, 1113–1115 (1990).

11 M. Salavati-Niasari, F. Davar, Materials Letters, 63, 441–443 (2009).

12 Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, and Y.S. Kang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 284, 364–368 (2006).

13 K. Woo, D. Kim, J.S. Kim, S. Lim, J. Moon, Langmuir, 25, 429–433 (2009).

14 B.K. Park, D. Kim, S. Jeong, J. Moon, and J.S. Kim, Thin Solid Films, 515, 7706–7711 (2007).

15 M. Pileni, and I. Lisiecki, Colloids and Surfaces A: Physicochemical and Eng. Aspects, 80, 63–68 (1993).

16 I. Safi, Surface and Coatings Technology, 127, 203–219 (2000).

17 G.S. Kim, B.S. Kim, S.Y. Lee, and J.H. Hahn, Surface & Coatings Technology, 200(5), 1669–1675 (2005).

18 Thi My Dung Dang, Thi Tuyet Thu Le, Eric Fribourg-Blanc, and Mau Chien Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol, 2, 015009 (2011).

19 S. Kapoor and T. Mukherjee, Chemical Physics Letters, 370, 83–87 (2003).

20 M. Salavati-Niasari, F. Davar, and N. Mir, Polyhedron, 17, 3514–3518 (2008).

21 M.K. Dosbolayev, A.U. Utegenov, and T.S. Ramazanov, IEEE Transactions on Plasma Science, 44(4), 469–472 (2016).

22 S.A. Orazbayev, Y.A. Ussenov, T.S. Ramazanov, M.K. Dosbolayev, and A.U. Utegenov, Contributions to Plasma Physics, 55 (5), 428–433 (2015).

23 V.A. Lisovskiy, S.D. Yakovin, and V.D. Yegorenkov, J. Phys. D: Appl. Phys., 31, 2722–2730 (2000).

24 H. Haberland, Z. Insepov, M. Kurrais, M. Mall, M. Moseler, and Y. Thurner, Nuclear Instruments and Methods in Physics Research, 80-81, 1320–1323 (1993).

25 H. Haberland, M. Mall, M. Mossler, Y. Qiang, T. Reiners, and Y. Thurner, Journal of Vacuum Science & Technology A, 12, 2925–2930 (1994).

26 P. Solar, O. Polonskyi, A. Choukourov, A. Artemenko, H. Biederman, and D. Slavinska, WDS'10 Proceedings of Contributed Papers, 3, 36–41 (2010).
How to Cite
SLAMIA, M. et al. Growth of copper nanoparticles by modified magnetron sputtering. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 67, n. 4, p. 57-63, oct. 2018. ISSN 1563-0315. Available at: <>. Date accessed: 19 dec. 2018.
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.