Thick brane solutions in modified theories of gravity

  • V. Dzhunushaliev IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Sung-Won Kim Ewha Womans University, Korea, Seoul
  • G.K. Nurtayeva IETP Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • N.A. Protsenko IETP Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Idrissov IETP Al-Farabi Kazakh National University, Kazakhstan, Almaty

Abstract

In modern theoretical physics, a number of trends are actively developing, offering a description of cosmological evolution within the framework of extended theories of gravity. Currently, the general state of research is such that it is currently difficult to identify globally preferred areas, and specific approaches have different degrees of development and success. One of their vast areas of modern theoretical physics is the study of modified theories of gravity. Its goal is to find out how gravity can be described within the framework of a modified theory so as not to contradict existing experimental data and offer a better description of a wide range of phenomena in cosmology. Such a program can be implemented from the point of view of problems of quantization of the theory of gravitational interaction. In this article, the thick brane model is considered in the 5-dimensional modified F(r)~Rn gravity. It is present regular asymptotically anti-de Sitter solutions contain in some range of value of the parameter n. The main feature of this model consists in existence of a fixed point in phase space where all solutions start and in which is place the brane. Existence of the fixed point allows to avoid thin fine tuning of model parameters for obtaining the studied decisions.

References

1 T. Kaluza, Sitzungsber. Preuss. Akad. Wiss, Berlin. (Math. Phys.), 966–972 (1921).

2 O. Klein, Zeitschrift für Physik A, 37 (12), 895–906 (1926).

3 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

4 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

5 V.A. Rubakov, Phys. Usp. 44, 871 (2001).

6 A.O. Barvinsky, Phys. Usp., 48 (2005) 545 (2005) Usp. Fiz. Nauk 175, 569 (2005). (in Russ)

7 V. Dzhunushaliev and V. Folomeev and M. Minamitsuji, Thick brane solutions. arXiv: 0904.1775.

8 A.D. Sakharov, Sov. Phys. Dokl., 12 (1968) 1040 Dokl. Akad. Nauk Ser. Fiz., 177. 70. (1967). (in Russ)

9 T.V. Ruzmaikina and A. A. Ruzmaikin, JETP 30, 372 (1970).

10 V.T. Gurovich, Dokl. Akad. Nauk SSSR 195 (1970) 1300, Sov. Phys. Dokl. 15. 1105 (1971). (in Russ)

11 H. Nariai, Prog. Theor. Phys. (Kyoto) 46, 433 (1971).

12 V.T. Gurovich and A.A. Starobinsky, Sov.Phys. JETP 50, 844 (1979). (in Russ)

13 A.A .Starobinsky, Phys.Lett. B 91, 99 (1980).

14 S. Capozziello, Int. Journ. Mod. Phys. D 11. 483 (2002).

15 S. Capozziello, S. Carloni and A. Troisi, Recent Res. Devel. Astron.Astrophysics 1, 625 (2003).

16 V. Folomeev, V. Gurovich and I.Tokareva, Grav. Cosmol. 12.163 (2006).

17 G. Allemandi, A. Borowiec and M. Francaviglia, Phys. Rev. D 70, 043524 (2004).

18 S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Phys. Rev. Lett. D 70, 043528 (2004).

19 S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Phys. Rev. Lett. D 71, 063513 (2005).

20 D.N. Vollick, Phys. Rev. D 68, 063510 (2003).

21 E. Flanagan, Phys. Rev. Lett. 92, 071101 (2004).

22 E.E. Flanagan, Class. Quantum Grav. 21, 417 (2003).

23 S. Nojiri and S. Odintsov, Phys. Lett. B 576, 5 (2003).

24 S. Nojiri and S.D.Odintsov, Mod. Phys. Lett. A 19, 627 (2004).

25 S. Nojiri and S. Odintsov, Phys.Rev. D 68 123512 (2003).

26 S. Nojiri and S.D.Odintsov, ECONF C 0602061 (2006).

27 S. Capozziello, V.F. Cardone and A. Troisi, JCAP 08. 001 (2006).

28 S. Nojiri and S.D. Odintsov, Phys. Lett. B 631, 1 (2005).

29 S. Nojiri, S.D. Odintsov and M. Sasaki, Phys. Rev. D 71, 123509 (2005).

30 S. Nojiri, S.D. Odintsov and P.V.Tretyakov, Phys. Lett. B 651, 224 (2007).

31 S. Nojiri, S.D. Odintsov and S. Ogushi, Phys. Rev. D 65, 023521 (2002).

32 S.Nojiri and S.D.Odintsov, JHEP 07. 049 (2000).

33 I.P. Neupane, JHEP 09, 040 (2000).

34 K.A. Meissner and M.Olechowski, Phys. Rev. D 65, 064017 (2002).

35 S. Nojiri, S. D.Odintsov and S. Ogushi, Phys. Rev. D 65, 023521 (2002).

36 M. Parry, S. Pichler and D. Deeg, JCAP 04, 014 (2005).

37 A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, JCAP 11, 021 (2008).

38 R. Reissig, G. Sansone, and R. Conti, Qualitative Theorie Nichtlinearer Differential gleichungen, Edizioni Cremonese, Roma. Italy (1963).

39 S.T. Abdyrakhmanov, K.A. Bronnikov and B.E. Meierovich, Grav. Cosmol. 11, 82 (2005).

40 S. Nojiri and S.D. Odintsov, Class. Quant. Grav.18, 5227 (2001).

41 M. Cvetic, S. Nojiri and S.D. Odintsov, Nucl. Phys. B 628, 295 (2002).

42 S. Nojiri, S.D. Odintsov and S. Ogushi, Int. J. Mod.Phys. A 16, 5085 (2001).
Published
2018-09-28
How to Cite
DZHUNUSHALIEV, V. et al. Thick brane solutions in modified theories of gravity. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 66, n. 3, p. 12-20, sep. 2018. ISSN 1563-0315. Available at: <http://bph.kaznu.kz/index.php/zhuzhu/article/view/776>. Date accessed: 20 oct. 2018.
Section
Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.