ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ИЗОТОПОВ ⁶Li И ⁷Li С ЛЕГКИМИ ЯДРАМИ

М.А. Жусупов, Р.С. Кабатаева

Казахский национальный университет им. аль-Фараби, НИИЭТФ, г.Алматы

Исследованы механизмы взаимодействия частиц с изотопами лития, а также литиевые реакции передачи с образованием ядра ⁹Ве. Рассчитаны спектроскопические факторы в каналах ${}^{6}Li + t$ и ${}^{7}Li + d$.

Во взаимодействиях частиц с легкими ядрами не существуют универсальных формул, описывающих сечения во всем угловом диапазоне или в значительном энергетическом интервале. Легкие ядра характеризуются ярко выраженными структурными особенностями. Спектроскопические характеристики двух соседних ядер могут кардинально отличаться друг от друга. Эти особенности легких ядер находят свое отражение в процессах их взаимодействия.

1 Общая характеристика взаимодействия ядер ⁶Li и ⁷Li с частицами

Ядра ⁶Li и ⁷Li широко используются в ядерной и термоядерной энергетике. Так, взаимодействие ядер ⁶Li с нейтронами служит для наработки необходимых для термоядерного синтеза ядер трития. При объяснении нуклеосинтеза элементов в Большом Взрыве существует проблема отсутствия стабильных изотопов с A = 8, из-за чего не «работает» механизм однонуклонного радиационного захвата (N, γ) Гамова. Действительно, среднее время жизни основного изотопа ⁸Ве мало: порядка 10^{-16} с. Однако, в процессе ⁷Li (n, γ) ⁸Li образуется ядро ⁸Li, живущее порядка 1 с. Далее, существует несколько возможных каналов, приводящих к образованию стабильных ядер с A = 9. В частности, таковым является процесс ⁸Li (n, γ) ⁹Li с образованием стабильного ядра ⁹Ве в результате β -распада.

Ядра ⁶Li и ⁷Li обладают своеобразной «кластерной» структурой. Из-за очень малой энергии связи ядер ⁶Li в αd -канале ($\varepsilon_{\alpha d}$ =1.475 МэВ) и ⁷Li в αt -канале ($\varepsilon_{\alpha t}$ =2.467 МэВ) в волновых функциях основных состояний этих ядер абсолютно доминируют соответственно αd - и αt -компоненты [1, 2]. Вес этих компонент гораздо больше 90% в обоих случаях. Кластерная структура изотопов лития приводит к резонансному характеру взаимодействия легких частиц с ними. Действительно, в рамках кластерной фолдинг-модели потенциал взаимодействия налетающих частиц может быть выражен через сумму их взаимодействий с отдельными фрагментами ядер ⁶Li и ⁷Li, усредненным по волновым функциям основных состояний этих ядер. Взаимодействия $\alpha \alpha$, αt , αd и т.д. носят при низких энергиях резонансный характер [1]. Эти резонансы в подсистемах проявляются и во взаимодействиях частиц с изотопами лития.

2 Механизмы взаимодействия частиц с изотопами лития

Рассмотрим ядерный процесс:

$$d + {}^{6}\text{Li} \rightarrow p + t + \alpha$$
, $Q = 2,56$ M₃B

Возможны три основных механизма этой реакции.

2.1 Механизм подхвата нейтрона падающим дейтроном (рис.1а). В спектре вылетающих частиц должна наблюдаться сильная корреляция при относительной энергии альфа-частицы и протона, равной ≈1,5 МэВ.

а - подхват нейтрона

б - срыв нейтрона

Рис. 1. Механизмы реакции d^{6} Li

2.2. Механизм срыва нейтрона с образованием возбужденного состояния ядра ⁷Li с квантовыми числами J^{π} , $T = 7/2^{-}$, 1/2 при энергии 4,63 МэВ (рис.16). В этом случае должна наблюдаться ярко выраженная корреляция между α и t, а протон будет медленным $(E_n \Box 0, 4 \text{ M} \Rightarrow B).$

2.3. Реакция с образованием составного ядра

$$d + {}^{6}\mathrm{Li} \rightarrow {}^{8}\mathrm{Be}^{*} \rightarrow \alpha + t + p$$
.

В этом случае характерным должно быть отсутствие энергетических корреляций между отдельными продуктами.

Таким образом, в данном примере признаком, указывающим на тот или иной механизм процесса, является наличие или отсутствие энергетической корреляции между отдельными продуктами реакции.

3 Проявление механизмов реакции в угловых распределениях частиц

Особенно наглядно характерные механизмы могут проявиться В угловых распределениях продуктов двухчастичных реакций.

Рассмотрим реакцию ${}^{6}Li(t,d)$ ⁷Li. На рисунке 2 представлены основные механизмы, возникающие при описании угловых распределений реакции (t,d) на ядре ⁶Li.

Рис. 2. Основные механизмы, возникающие в реакциях (t, d) на ядре ⁶Li

Хорошо известно, что полюсный механизм срыва нейтрона (рис. 2a) дает основной вклад в вылет дейтронов на небольшие углы, треугольная диаграмма выбивания дейтронов (рис. 2в) дает главный вклад в вылет дейтронов на малые и средние углы и, наконец,

механизм срыва тяжелой частицы (рис. 2б) дает основной вклад в наблюдаемый в эксперименте рост сечения на большие углы, близкие к π (рассеяние назад).

Отметим, что методы расчета отдельных диаграмм были развиты в работах советских физиков И.С.Шапиро, Л.Д. Блохинцева и др. [3, 4]. Используя особенности структуры легких ядер можно, выбирая кинематику процесса, выделить те или иные механизмы реакции.

Очевидно, что если в реакциях однонуклонного срыва или подхвата проявляется одночастичный (оболочечный) аспект ядерной волновой функции, то в процессах «выбивания» или «тяжелого» срыва, связанных с обменом целыми группами нуклонов, проявляется ее другой, кластерный аспект. Если в реакции (t,d) на ядре ⁶Li рассмотреть образование ядра ⁷Li в возбужденных состояниях, то особый интерес представляют 2 близколежащих уровня ⁷Li с $J^{\pi}, T = \frac{5}{2}, \frac{1}{2}$. Один из них при энергии $E_1 = 6,76$ МэВ имеет ярко выраженную αt -кластерную структуру. Об этом свидетельствует большое значение спектроскопического фактора (или приведенной ширины) для вылета тритонов для этого уровня $S_t \square 1$ [5]. В то же время нуклонная ширина этого уровня весьма мала. Для более высоко лежащего уровня $E_2 = 7,47$ МэВ наблюдается обратная картина: этот уровень характеризуется большим значением нейтронного спектроскопического фактора S_n и очень малым значением для тритонного фактора S_t . Поэтому, если зафиксировать в эксперименте уровень ⁷Li при $E_2 = 7,47$ МэВ, то для него будет доминировать полюсный механизм, а для уровня $E_1 = 6,76$ МэВ будут преобладать механизмы тяжелого срыва и кластерного выбивания.

Укажем также на большое число каналов во взаимодействии частиц с ядрами лития. Так в процессе $d + {}^{6}Li$ возможны семь экзотермических процессов, а число вторичных реакций с выделением энергии превышает 80!

В работе [6] приведены результаты расчетов полных сечений рассеяния резонансных реакций ⁷Li(α, γ)¹¹B и ⁶Li(α, γ)¹⁰B в рамках формализма Брейта-Вигнера. Ядра ¹¹B и ¹⁰B обладают своеобразной структурой. Для них, как и для других сильно кластеризованных легких ядер типа ⁶Li, ⁷Li, ⁸Be, сначала открываются кластерные каналы распада (α - частичный), а нуклонные каналы лежат выше по энергии [7, 8].

4 Мультикластерная структура ядра ⁹Ве

Ядро ⁹Ве обладает своеобразной кластерной структурой. Согласно многочастичной модели оболочек [5] основное состояние этого ядра характеризуется схемой Юнга [441]. Вклад ее составляет более 90 %. Вклад состояний со схемой Юнга [432] на уровне нескольких процентов. Совершенно очевидно, что доминирующей конфигурацией ядра ⁹Ве является $\alpha \alpha n$ -модель. Именно в этой модели [9] получено наилучшее описание свойств основного состояния ядра ⁹Ве. В этой же модели достигнуто успешное описание фотоядерных процессов (γ , p), (γ , d), (γ , t) на ядре ⁹Ве [1] и реакций упругого рассеяния адронов на этом ядре [10]. Конфигурация [432], соответствующая кластерному разбиению αdt , отвечает более высоким энергиям возбуждения [5]. Вместе с тем в работе [11] предлагается искать указанные состояния со схемой Юнга [432] в литиевых реакциях передачи типа ⁷Li(6 Li, α)⁹Be и ⁶Li(7 Li, α)⁹Be (рис.3).

Рис. 3. Литиевые реакции передачи

Из-за упомянутой выше малости энергии связи ⁷Li в канале $\alpha + t$ и ⁶Li в канале $\alpha + d$ доминирующими механизмами в обоих случаях являются передача дейтронного и тритонного кластеров соответственно. Однако, гибкость многочастичной модели оболочек состоит в том, что схема Юнга [441] допускает вылет дейтронов и тритонов, так как согласно правилу Литтлвуда возможны разбиения [441] [43]+[2] и [441] [42]+[3]. Поэтому для поиска состояний αtd -конфигурации нужно включить не только состояния ядра ⁹Ве со схемой Юнга [432], но и состояния со схемой [441].

Нами был проведен расчет спектроскопических факторов в каналах ${}^{6}\text{Li}+t$ и ${}^{7}\text{Li}+d$, включающий обе схемы Юнга [441] и [432]. В реакциях передачи сечение возбуждения уровней остаточного ядра (в данном случае ${}^{9}\text{Be}$) могут быть представлены выражением (5) (в предположении прямого механизма)

$$\sigma \square (2J+1) \sum S_L \cdot \Phi , \qquad (5)$$

здесь S_L - соответствующие спектроскопические факторы, а Φ - фактор, зависящий от кинематических характеристик. Если считать, что Φ - более или менее плавная величина в зависимости от энергии, то наблюдаемые в реакциях максимумы должны быть связаны с максимумами спектроскопических факторов.

Рис. 4. Спектр возбуждения ядра ⁹Ве

В таблице 1 даны рассчитанные значения спектроскопических факторов. Эти же величины приведены на рисунке 4 в виде гистограмм, включающих суммы величин S -

факторов по области энергий 1 МэВ. Сравнение с экспериментальными данными [12] показывает, что теория хорошо передает основные максимумы при энергиях 11,8 МэВ, 15,2 МэВ, 17,8 МэВ и 22 МэВ.

Уровни ⁹ Ве		S_d^L		S_t^L		$(2J+1)\sum_{L}S_{d}^{L}$	$(2J+1)\sum_{t}S_{t}^{L}$
<i>Е</i> (МэВ)	J,T	L = 0	<i>L</i> = 2	<i>L</i> = 1	<i>L</i> = 3	$Li_{g.s.}^7 + d \xrightarrow{L} Be^{9^*}$	$Li_{g.s.}^6 + t \rightarrow Be^{9^*}$
01	3/2,1/2	3,65 L10 ⁻²	3,73 L 10 ⁻¹	9 L 10 ⁻²	8,25 L10 ⁻⁴	1	1
12	-	-	-	-	-	-	-
23	1/2,1/2	1,07 - 10-2	4,06 L10 ⁻¹	7,35 L10 ⁻²	-	2,00	1,93
	5/2,1/2	1,32 - 10 ⁻²	3,98 - 10-1	1,8 - 10 ⁻²	7,5 L 10 ⁻²		
45	3/2,1/2	4,39 L10 ⁻²	3,32 L10 ⁻¹	2,85 L 10 ⁻²	2,85 L10-3	0,92	0,34
56	5/2,1/2	2,98 L 10 ⁻³	3,90 - 10 ⁻¹	3,82 L 10 ⁻³	4,87 L 10 ⁻¹	1,44	8,04
67	7/2,1/2	-	2,24 L 10 ⁻¹	-	3,37 - 10 ⁻¹	1,1	7,48
910	1/2,1/2	1,74 - 10 ⁻¹	1,66 - 10 ⁻¹	6,45 L 10 ⁻¹	-	0,44	4,46
	9/2,1/2	-	5,72 - 10 ⁻³	-	3,37 - 10 ⁻²		
1011	3/2,1/2	5,06 - 10 ⁻¹	1,49 - 10 ⁻¹	6,22 L 10 ⁻¹	6,37 L 10 ⁻⁴	2,36	10,36
	7/2,1/2	-	1,57 - 10 ⁻¹	-	1,65 - 10 ⁻¹		
1112	7/2,1/2	-	3,73 - 10 ⁻¹	-	1,35 - 10 ⁻²	4,50	9,48
	5/2,1/2	5,72 - 10 ⁻¹	1,74 - 10 ⁻¹	5,55 L 10 ⁻¹	4,42 - 10 ⁻³		
1314	5/2,1/2	6,47 L 10 ⁻²	2,65 L 10 ⁻¹	6,15 L 10 ⁻²	5,4 L 10 ⁻²	1,19	1,90
1415	3/2,1/2	4,15 - 10 ⁻²	2,07 - 10 ⁻¹	4,65 L 10 ⁻²	4,87 L 10 ⁻²	0,61	1,04
1516	1/2,1/2	1,07 - 10 ⁻¹	9,96 - 10 ⁻²	1,8 -10-1	-	0,54	6,96
	9/2,1/2	-	4,56 - 10 ⁻²	-	2,17 - 10 ⁻¹		
1718	3/2,1/2	2,15 L10 ⁻²	2,82 L10 ⁻¹	5,47 L 10 ⁻²	1,27 L 10 ⁻¹	2,96	9,34
	7/2,1/2	-	1,16 - 10 ⁻¹	-	2,1 -10-1		
	5/2,1/2	1,07 L 10 ⁻²	3,40 L 10 ⁻¹	9,75 - 10 ⁻³	1,05 - 10 ⁻¹		
	1/2,1/2	8,3 L 10 ⁻²	2,40 L 10 ⁻¹	1,5 -10-1	-		
1819	3/2,1/2	3,32 L10 ⁻²	1,90 - 10 ⁻¹	1,95 L 10 ⁻¹	5,92 - 10 ⁻³	0,55	2,20
1920	5/2,1/2	5,47 L 10 ⁻³	1,16 L 10 ⁻¹	3,97 L 10 ⁻³	9 ^L 10 ⁻²	0,43	1,49
2021	-	-	-	-	-	-	-
2122	3/2,1/2	2,32 L10 ⁻³	1,49 L 10 ⁻²	9 ^L 10 ⁻³	9,75 - 10 ⁻³	0,41	3,04
	3/2,1/2	1,82 L10 ⁻³	1,32 - 10 ⁻¹	4,65 L 10 ⁻³	5,92 - 10 ⁻²		
	7/2,1/2	-	9,13 - 10 ⁻²	-	9,75 - 10 ⁻²		
2324	5/2,1/2	8,3 L 10 ⁻⁴	2,57 - 10 ⁻²	19,5 - 10-4	6,0 ⁻¹ 10 ⁻²	0,13	2,12
	7/2,1/2	-	1,74 - 10 ⁻³	-	2,4 L 10 ⁻²		
	5/2,1/2	5,06 L 10 ⁻⁴	5,89 - 10 ⁻³	2,17 L 10 ⁻³	3,22 - 10-2		
2425	3/2,1/2	7,05 L 10 ⁻³	5,06 L 10 ⁻³	1,12 - 10-2	3,3 L 10 ⁻⁵	0,05	1,42
	1/2,1/2	1,82 L 10 ⁻²	4,98 - 10 ⁻⁴	2,7 L 10 ⁻²	-		

Таблица 1. Кластерные спектроскопические факторы с образованием различных состояний ядра ⁹Ве

Таким образом, трехкластерные состояния, имеющие αtd -природу, могут отвечать не только орбитальной схеме Юнга [432], но и с не меньшим весом и схеме Юнга [441]. Поэтому не удивительным является успешное описание фотоядерных процессов (γ , d) и (γ , t) на ядре ⁹Ве, достигнутое нами в $\alpha \alpha n$ -модели [1].

Литература

1. Н.А.Буркова, К.А.Жаксыбекова, М.А.Жусупов. Потенциальная теория кластерного фоторасщепления легких ядер. // ЭЧАЯ. 2005. Т. 36. вып. 4.

2. B.Buck, H.Friedrich and C.Wheatley. Local Potential models for the scattering of complex nuclei. // Nucl. Phys. A275. 1975. P. 246-268.

3. В.М.Колыбасов, Г.А.Лексин, И.С.Шапиро. Механизм прямых реакций при высоких энергиях. // УФН. 1974. Т.113. вып.2. С.239-284.

4. Л.Д.Блохинцев.Диаграммные методы в теории прямых ядерных реакций.М.1971.55 с.

5. А.Н.Бояркина. Структура ядер 1р-оболочки. М. МГУ. 1973. 52 с.

6. М.А.Жусупов, Р.С.Кабатаева. Ядерно-физические методы диагностики термоядерной плазмы. // Вестник КазНУ. Серия физическая. 2009. № 2 (29). С.102-111.

7. Ajzenberg-Selove F. Energy Levels of Light Nuclei A=11. // Nucl. Phys. A506 (1990) 1.

8. D.R. Tilley et al. Energy levels of light nuclei A=10. 2004. // Nucl. Phys., A745.

9. В.Т.Ворончев, В.И.Кукулин, В.Н.Померанцев, Х.Д.Разиков, Г.Г.Рыжих. Изучение структуры и свойств ядер с А=9 (⁹Ве-⁹В) в рамках мультикластерной динамической модели 2α + N. // Ядерная физика. 1994. Т.57. №11. С.1964-1980.

10. М.А.Жусупов, Е.Т.Ибраева. Упругое и неупругое рассеяние адронов на легких ядрах в дифракционной теории. // ЭЧАЯ. 2000. Т. 31, вып. 6. С.1427-1495.

11. В.М.Лебедев, В.Г.Неудачин, А.А.Сахарук. Супермультиплетная симметрия и уровни вблизи порогов в системе из двух и трех легчайших кластеров. // Ядерная физика. 2000. Т.63. №2. С.248-256.

12. Ю.А.Глухов, Б.Г.Новацкий, А.А.Оглоблин, С.Б.Сакута, Д.Н.Степанов, В.И.Чуев. Исследование реакций Li+Li и возможное существование трехкластерных состояний. // Ядерная физика. 1971. Т.13. вып.2. С.277-282.

⁶Li және ⁷Li изотоптарының жеңiл ядролармен әрекеттесуiнiң ерекшелiктерi

М.Ә. Жүсіпов, Р.С. Қабатаева

Бөлшектердің литий изотоптарымен әрекеттесу механизмдері және ⁹Ве ядросының құрылуымен беріліс реакциялары зерттелді. ${}^{6}Li + t$ және ${}^{7}Li + d$ каналдары үшін спектроскопиялық факторлар есептелді.

PECULIARITIES OF ⁶Li AND ⁷Li ISOTOPES INTERACTION WITH LIGHT NUCLEI

M.A. Zhusupov, R.S. Kabatayeva

Mechanisms of particles interaction with lithium isotopes and lithium transfer reactions with ⁹Be nucleus formation are investigated. Spectroscopic factors in ${}^{6}\text{Li} + t$ and ${}^{7}\text{Li} + d$ channels are calculated.