ФИЗИКА ПЛАЗМЫ

ЭЛЕКТРОПРОВОДНОСТЬ ЧАСТИЧНО ИОНИЗОВАННОЙ КВАЗИКЛАССИЧЕСКОЙ ВОДОРОДНОЙ ПЛАЗМЫ

3.С. Мажит

Павлодарский государственный педагогический институт, г.Павлодар

В работе определены дифференциальные сечения рассеяния электронов на протонах и атомах в случае квазиклассической водородной плазмы, исследована зависимость коэффициента электропроводности от параметра связи в диапазоне от 0.1 до 1.5 при фиксированном значении параметра плотности $r_s = 5$ на основе сдвигов фаз рассеяния, полученных из решения уравнения Калоджеро.

Исследование свойств высокотемпературной плазмы представляет существенный интерес для физики плазмы, астрофизики и работ по термоядерному синтезу. Физические параметры плазмы – температура, степень ионизации, свободная энергия, давление, среднее расстояние между частицами, радиус Дебая и др. – взаимосвязаны. Некоторые из них могут быть заданы, другие определяются посредством радиальных функций распределения. Приближение парных корреляций позволяет связать термодинамические и электродинамические параметры и получить самосогласованную химическую модель плазмы [1].

Рассмотрим частично ионизованную квазиклассическую водородную плазму. Состояние плазмы описывается с помощью безразмерных параметров связи Γ и плотности r_s :

$$\Gamma = \frac{e^2}{ak_BT}$$
, $r_s = a/a_B$, где e — заряд электрона, k_B — константа Больцмана, T — температура

плазмы, a — среднее расстояние между частицами, a_B — Боровский радиус. В данной работе ставится задача: определить дифференциальные сечения рассеяния частиц квазиклассической водородной плазмы и коэффициент электропроводности в зависимости от параметров связи и плотности.

Состоянию термодинамического равновесия системы соответствует минимум свободной энергии (потенциала Гельмгольца). При минимуме свободной энергии системы определяется степень ионизации плазмы [1]. Величина степени ионизации плазмы существенно влияет на характеристики плазмы в дальнейших расчетах.

Потенциалы взаимодействия заряженных частиц классической плазмы определяются как функции расстояния r:

$$\varphi_{ee}(r) = \varphi_{pp}(r) = -\varphi_{ep}(r) = \frac{e^2}{r}$$

Здесь и далее индекс "e" соответствует электронам, "p" – протонам, "n" –атомам.

При рассмотрении плазмы как квазиклассической системы заряженных и нейтральных частиц в базовых потенциалах учитываются квантово-механические свойства частиц (электронов и протонов), в частности эффекты дифракции. Так потенциал Дойча для взаимодействия электрон-электрон имеет вид:

$$\varphi_{ee}(r) = \frac{e^2}{r} \left(1 - \ell^{-\frac{r}{\lambda_{ee}}} \right)$$

Здесь λ_{ee} - длина волны де Бройля системы взаимодействующих частиц. Аналогично записываются потенциалы взаимодействий протон-электрон и протон-протон:

$$\varphi_{ep}(r) = -\frac{e^2}{r} \left(1 - \ell^{-\frac{r}{\lambda_{ep}}} \right), \ \varphi_{pp}(r) = \frac{e^2}{r} \left(1 - \ell^{-\frac{r}{\lambda_{pp}}} \right),$$

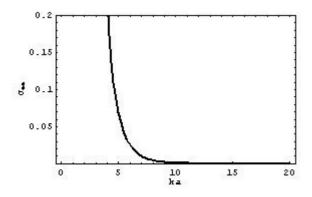
 λ_{ep} , λ_{pp} — соответствующие длины волн де Бройля систем взаимодействующих частиц. Остальные микропотенциалы представлены ниже:

$$\varphi_{pn}(r) = -\varphi_{en}(r) = e^2 \left(\frac{1}{r} + \frac{1}{a_R} \right) \exp\left(-\frac{2r}{a_R} \right), \quad \varphi_{nn}(r) = \frac{e^2}{r} \ell^{-\sqrt{2}r/a_R}$$

Дифференциальное сечение упругого рассеяния в первом борновском приближении определяется по формуле [2]

$$d\sigma^{ab} = \left(\frac{\mu_{ab}}{2\pi\hbar^2}\right)^2 \left(\int \ell^{-i\vec{k}_b\vec{r}^i} \Phi_{ab}(\vec{r}^i) \ell^{i\vec{k}_a\vec{r}^i} d^3r\right)^2 d\Omega, \qquad (1)$$

где г — радиус-вектор частицы массой $\mu_{ab} = m_a m_b / (m_a + m_b)$, μ_{ab} — приведенная масса системы частиц сортов a и b, m_a и m_b — массы соответствующих частиц, Φ_{ab} — макропотенциал, \hbar — постоянная Планка, k_a и k_b — волновые числа налетающей и рассеянной волн соответственно, $d\Omega$ — элемент телесного угла.



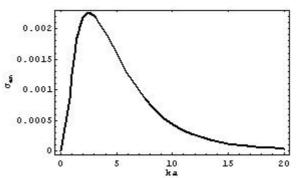


Рис.1. Дифференциальное сечение рассеяния электрона на протоне, $r_s = 5$ и Γ =0.5

Рис.2 Дифференциальное сечение рассеяния электрона на атоме, $r_s = 5$ и Γ =0.5

На рисунках 1 и 2 приведены пространственные зависимости дифференциальных сечений упругого рассеяния электрона на протоне (рис.1) и электрона на атоме (рис.2). Из рисунка 1 видно, чем ближе частицы друг к другу, тем больше рассеяние. На некотором расстоянии ka~10 взаимодействием можно пренебречь. Взаимодействие электрона с атомом менее интенсивно по сравнению с взаимодействием электронов друг с другом и с протоном.

Для определения электропроводности частично ионизованной плазмы используется следующая формула [3]:

$$\sigma = \frac{4}{3} \frac{e^2}{\sqrt{2\pi m_e} (k_B T)^{5/2}} \int_0^\infty \frac{n_e E \exp(-E/k_B T)}{n_p Q_T^{ep}(E)/\gamma_E + n_p Q_T^{en}(E)} dE, \qquad (2)$$

где n_e , n_p , n_n — концентрации соответственно электронов, протонов и атомов, E — энергия электрона, $Q_T^{ep}(E)$ и $Q_T^{en}(E)$ — сечения рассеяния электрона на протоне и атоме соответственно, $\gamma_E = 0.582$ — коэффициент, введением которого учитывается перераспределение импульса в потоке электронов.

Электропроводность обычно нормируется в виде

$$\sigma^* = \sigma/\omega_p$$

здесь $\omega_p = \sqrt{\frac{4\pi e^2 n_e}{m_e}}$ — плазменная частота (лэнгмюровская частота).

Для определения сдвига фаз необходимо решить уравнение Ф.Калоджеро [4]:

$$\frac{d}{dr}\delta_l^{ab}(r) = -\frac{2\mu_{ab}}{\hbar^2 k}\Phi_{ab}(r)\left[\cos\delta_l^{ab}(r)j_l(kr) - \sin\delta_l^{ab}(r)n_l(kr)\right]^2 \tag{3}$$

с начальными условиями $\delta_l^{ab}(0)=0$. Здесь $\delta_l^{ab}(r)$ — фазовый сдвиг при рассеянии частиц сортов a и b; $j_l(kr)$ и $n_l(kr)$ — функции Рикатти-Бесселя первого и второго родов соответственно, индекс l соответствует орбитальному квантовому числу: l=0,1,2 и т.д.; $E=\hbar^2k^2/2\mu_{ab}$ — относительная кинетическая энергия взаимодействующих частиц с приведенной массой μ_{ab} .

На рисунках 3 и 4 представлены пространственные зависимости сдвигов фазы рассеянных волн при взаимодействиях электрона с протоном и электрона с атомом, полученные из решения уравнения (3). Фазы рассеяния уменьшаются с возрастанием орбитального квантового числа l, так как при фиксированной энергии частиц рост l соответствует увеличению прицельного параметра, а значит снижению интенсивности рассеяния.

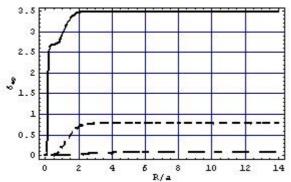


Рис.3. Электрон-протонный фазовый сдвиг в зависимости от расстояния между частицами при $r_s=5$ и Γ =0.5. Сплошная линия -l=0, короткий пунктир: l=1; длинный пунктир: l=2

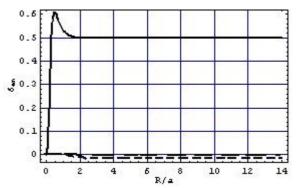


Рис. 4. Электрон-атомный фазовый сдвиг в зависимости от расстояния между частицами при $r_s=5$ и Γ =0.5. Короткий пунктир: l=1; длинный пунктир: l=2.

Сечения рассеяния, $Q_T^{ep}(E)$ и $Q_T^{en}(E)$, в формуле (2) определяются через сдвиги фаз на бесконечном удалении частиц друг от друга

$$Q_{T}^{ab}(k) = \frac{4\pi}{k^{2}} \sum_{l=0}^{\infty} (l+1) \sin^{2} \left(\delta_{l+1}^{ab}(\infty) - \delta_{l}^{ab}(\infty) \right).$$

На рисунке 5 приведена зависимость электропроводности плазмы от параметра связи Γ при фиксированном значении параметра плотности $r_s = 5$. Значения параметра связи Γ варьировались в пределах от 0.1 до 1.5. Электропроводность с ростом Γ падает. Снижение коэффициента электропроводности с ростом параметра неидеальности Γ обычно объясняют снижением степени ионизации, в то же время возрастание значений Γ соответствует

увеличению заряженных частиц в плазменной среде и уменьшению температуры при фиксированной концентрации частиц [5].

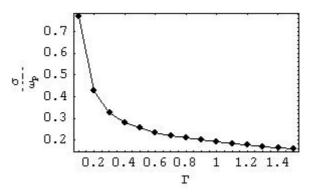


Рис.5. Зависимость коэффициента электропроводности от параметра связи, $r_s = 5$.

Таким образом, в работе получены дифференциальные сечения рассеяния электронов на протонах и атомах в случае квазиклассической водородной плазмы. Зависимость коэффициента электропроводности от параметра связи при фиксированном значении параметра плотности для квазиклассической водородной плазмы является монотонной: при фиксированном значении параметра плотности ($r_s = 5$) с ростом параметра связи электропроводность плазмы снижается. Это связано с усилением влияния взаимодействия электронов с протонами и нейтральными атомами, т.е. с повышением степени неидеальности системы.

Литература

- 1. Архипов Ю.В., Баимбетов Ф.Б., Давлетов А.Е., Стариков К.В. Псевдопотенциальная теория плотной высокотемпературной плазмы. Алматы: "Қазақ университеті", 2002.—113 с.
 - 2. Давыдов А.С. Квантовая механика. М.: Физматгиз, 1963. 748 с.
- 3. Фортов В.Е., Храпак А.Г., Якубов И.Т. Физика неидеальной плазмы. М.: Физматлит, 2004.
 - 4. F. Calogero, Variable phase approach to potential scattering // Academic Press, 1967.
- 5. Баимбетов Ф.Б., Давлетов А.Е., Мажит З.С. Псевдопотенциалы квазиклассической водородной плазмы //Известия НАН РК. Серия физико-математическая. 2009. №1. С.45-48.

ШАЛА ИОНДАЛҒАН КВАЗИКЛАССИКАЛЫҚ СУТЕКТІ ПЛАЗМАНЫҢ ЭЛЕКТРӨТКІЗГІШТІГІ

3.С. Мажит

Мақалада квазиклассикалық сутекті плазма үшін электрондардың протондар мен атомдарда шашыраудың дифференциалдық қималары анықталды. Электрөткізгіштік коэффициентінің белгілі тығыздық параметрі $r_s = 5$ үшін 0.1 ден 1.5 дейін диапазонда байланыс параметріне тәуелділік шығарылды. Шашырау фазаларының ығысуы Калоджеро теңдеуінің шешімі болып табылады.

PARTIALLY IONIZED QUASICLASSICAL HYDROGEN PLASMAS ELECTROCONDUCTIVITY

Z. Mazhit

In the case of quasi-classical hydrogen plasmas differential cross-sections of electron scattering by proton and atom have been gotten. At fixed density parameter's value $r_s = 5$ a dependence of electro conductivity on Coulomb coupling parameter in range of 0.1÷1.5 has been investigated. Phase shifts of the scattering were derived from solution of Calogero equation.