РАДИАЦИОННЫЕ И ЛЕПТОННЫЕ РАСПАДЫ МЕЗОНОВ

С.А. Жаугашева, Г.С. Нурбакова, Г.Г. Сайдуллаева

Казахский национальный университет им. аль-Фараби, г. Алматы

Рассмотрены радиационные и лептонные распады мезонов состоящих из тяжелых и легких кварков. Определены переходы матричного элемента из начального состояния к конечному состоянию с учетом релятивистской поправки. Произведен расчет ширины Е1 и ЕМ переходов для $(\bar{c}c)$, $(\bar{b}b)$ и $(b\bar{c})$ мезонов.

1 Введение

Последние десять лет ширина распада $(\bar{c}c)$, $(\bar{b}b)$ и $(c\bar{b})$ кварконий с высокой точностью в определены в экспериментах BEST [1], BaBar [2], PDG [3], и CLEO III [4]. Для описания результатов этих экспериментов требуется учет релятивистской поправки, им посвящены многочисленные теоретические работы в рамках различных полевых и нерелятивистских кварковых моделях (детали см. в [5]). При учете релятивистских поправок обычно сталкивается с стандартными проблемами (детали см. в [6]). В данной работе рассмотрены радиационные и лептонные распады мезонов состоящих из тяжелых и легких кварков. Из квантовой электродинамики известно, что радиационные распады обычно осуществляются благодаря внешнему электрическому и магнитному полю. Эффективный Лагранжиан взаимодействия валентного кварка записывается в следующем образом:

$$L = \Psi^{+} \left\{ iD_{0} + \frac{\vec{D}^{2}}{2m} + C_{F} \cdot g \frac{\vec{\sigma}\vec{B}}{2m} + C_{0} \cdot g \cdot \frac{[\vec{D}, \vec{E}]}{8m^{2}} + iC_{S}g \cdot \frac{(\vec{\sigma}[\vec{D} \times \vec{E}])}{8m^{2}} + ... \right\} \Psi, \qquad (1.1)$$

где \vec{E} , и \vec{B} - напряженности хромоэлектрического и хромомагнитного поля соответственно; D_0 , \vec{D} - ковариантный дифференциал; C_F , C_D и C_S - константы перенормировки, и дополнительная слагаемая связанная со скоростями кварков и антикварков. В этом случае электромагнитное взаимодействие кварков записывается в стандартном виде:

$$\vec{j} \cdot \vec{A}_{e_m} = e_q \Psi^+ \left\{ \frac{\{\vec{D}, \vec{A}_{e_m}\}}{2m} + (1 + k_Q) \frac{\vec{\sigma} \vec{B}_{e_m}}{2m} \right\} \Psi, \tag{1.2}$$

где e_Q - электрический заряд кварка, первое слагаемое в (1.2) определяет матричный элемент электрического перехода, а второе - определяет матричный элемент магнитного перехода в низшем переходе по теории возмущения а k_Q - аномальный магнитный момент кварка.

Мы будем определять переходы матричного элемента из начального состояния n^{2s+1} l_J , , т.е. i - состояния к конечному состоянию $n'^{2s'+1}$ $l'_{J'}$, т.е. f - состояния с учетом релятивистской поправки.

Работа построена следующим образом, в первом разделе рассмотрен электрический и магнитный переход. Вычислен, интеграл ЕМ перехода с помощью ВФ для потенциального взаимодействия кварков-антикварков с учетом спин-спинового и спин-орбитального взаимодействия. Во втором разделе приведены детали вычисления переходного интеграла для различных кварков. Определен матричный элемент ширины радиационного распада, в общем виде для любых переходов. Приведены табличные данные результатов вычислении и теоретические численные значения других авторов и экспериментальные данные.

2 Амплитудный переход

Электромагнитный (EM) амплитудный переход системы кварков (\overline{Q}_2Q_1) определяется с помощью матричного элемента электромагнитного тока, $\left\langle f\middle|j_{em}^{\mu}\middle|i\right\rangle$, где i - начальное состоя-

ние кварка, а f - конечное состояние кварка.

В нерелятивистском потенциальном моделе состояния кварков характеризуется орбитальным (l), радиальным (n_r) квантовым числом а также суммарным спином s, и суммарным угловым моментом J. В нерелятивистском пределе спиновая зависимость волновой функции отделяется от пространственной зависимости. Пространственная часть волновой функции (ВФ) $\Psi(\vec{r})$ в нерелятивистском квантово-механическом подходе, для сферический симметричный потенциал представляется через радиальную волновую функцию $\Psi_{nl}(r)$ и угловую волновую функцию:

$$\Psi(\bar{r}) = Y_{lm}(\theta, \varphi) \Psi_{nl}(r). \tag{2.1}$$

Пространственная зависимость электромагнитной амплитуды перехода уменьшает различные функции положения кварка и импульса между волновыми функциями начального и конечного состояния. Теперь изложим некоторые детали электрического и магнитного перехода по отдельности.

2.1 Электрический переход

Электрические переходы не изменяют вращение кварка. Самым низким НР переходом является переход электрического диполя (E1). Они переходят при $\Delta l = \pm 1$ и $\Delta s = 0$. Чтобы вычислить амплитуду Е1 перехода, l может быть заменен в электрическом термине перехода на E_q . Выделяя полностью систему центра масс, оператор импульса кварка $i\mathbf{D}/m_O$, может быть заменен коммутатором [h,x], гамильтониана связанного состояния h с оператором координаты кварка х. Наконец, гамильтониан, действующий на начальное или конечное состояние, является просто массой того состояния. В НР состояний, это равно конечному импульсу фотона $k = (M_i^2 - M_f^2)/(2M_i)$, где M_i , M_f -массы мезонов в начального и конечного состояния. Амплитуда радиационного E1 -перехода между начальным состоянием $(n'^{2s'+1}J)$, i, и конечным состоянием $(n'^{2s'+1}J')$, f записывается в следующим виде: (детали см. в [7]).

$$\mathbf{M}^{e}(i \to f)_{\mu} = \delta_{s,s'}(-1)^{s+J+J'+1+M'} k \sqrt{(2J+1)(2J'+1)(2l+1)(2l'+1)}$$
(2.2)

$$\begin{pmatrix} J' & 1 & J \\ -M' & m & M \end{pmatrix} \begin{pmatrix} l' & 1 & l \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l & s & J \\ J' & 1 & l' \end{cases} \langle e_Q \rangle I_{if},$$

 $\binom{J'}{-M'} \frac{1}{m} \frac{J}{M} \binom{l'}{0} \frac{1}{0} \frac{l}{0} \binom{l}{0} \frac{s}{0} \frac{J}{J'} \binom{e_{\mathcal{Q}}}{I_{if}},$ где $\binom{J'}{-M'} \frac{1}{m} \frac{J}{M} \binom{l'}{0} \frac{1}{0} \frac{l}{0} \binom{l}{J'} \frac{1}{1} \frac{l}{l'}$ определен через 3jm символы Вигнера, обладаю-

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_3 + m_3 + 2j_1} \frac{1}{\sqrt{2j_3 + 1}} C_{j_1 - m_1 j_2 - m_2}^{j_3 m_3}.$$
 (2.3)

Обратное соотношение имеет вид
$$C \frac{j_3^m 3}{j_1^m 1^j 2^m 2} = (-1)^{j_1 - j_2 + m} 3 \sqrt{2j_3 + 1} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}. \tag{2.4}$$

 $3\,jm$ -символ представляет собой амплитуду вероятности того, что три угловых моментов $\,{f j}_1^{}$, ${f j}_2$ и ${f j}_3$ с проекциями ${\it m}_1$, ${\it m}_2$ и ${\it m}_3$ соответственно складываются в полный угловой мо-

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \eta \sum_{j'm'} C \frac{j'm'}{j_1^m 1} \sum_{j'2^m 2} C \frac{00}{j'm' j_3^m 3}.$$
 (2.5)

Фазовый множитель $\eta = (-1)^{j_1-j_2+m_3}$ выбран так, чтобы циклическая перестановка моментов \mathbf{j}_1 , \mathbf{j}_2 и \mathbf{j}_3 не изменяла 3jm-символа, а $\langle e_{\mathcal{Q}} \rangle = (e_1m_2-e_2m_1)/(m_1+m_2)$ -усредненный электрический заряд связанного состояния, и интеграл I_{if} который характеризует Е1- переход, определяется в следующем виде:

$$I_{if} = \int_{0}^{\infty} dr \cdot \Psi_{nl}^{*(i)}(r) r^{3} \Psi_{n'l'}^{(f)}. \tag{2.6}$$

Для вычисления этого интеграла нужно узнать ВФ для потенциального взаимодействия кварков-антикварков с учетом спин-спинового и спин-орбитального взаимодействия. Явный вид ВФ для различных состояний мезонов состоящих из легких и тяжелых кварков определен в работах [8,9]. Детали вычисления переходного интеграла (2.6) приведены в следующем разделе для различных кварков. Тогда, усредненное значение ширины перехода можно представить в следующем виде:

$$\Gamma\left(i \xrightarrow{E_1} f + \gamma\right) = \frac{4\alpha \cdot e_Q^2}{3} (2J' + 1) S_{ij}^E k^3 |I_{ij}|^2, \tag{2.7}$$

где $S_{ij}^{\ E} = S_{fi}^{\ E}$ статистический фактор, который определяется следующим образом:

$$S_{if}^{E} = \max(l, l') \begin{cases} J & 1 & J' \\ s' & l & s \end{cases}^{2}.$$
 (2.8)

При конкретных значениях J, J', s, s' и l полученные данные приведены в таблицах 1,2.

2.2 Магнитный переход

Теперь приступим к вычислению матричного элемента, переход который обусловлен магнитным взаимодействием. Магнитные переходы связаны с вращением кварка и записывается в виде (детали см.[3]).

$$M^{m}(i \to f)_{\mu} = \delta_{l,l'}(-1)^{l+J'+J+l+\mu+M'} 3\sqrt{(2J+1)(2J'+1)(2s+1)(2s'+1)} \times \sum_{\nu,\sigma} k_{\sigma} \begin{pmatrix} 1 & 1 & 1 \\ -\mu & \sigma & \nu \end{pmatrix} \begin{pmatrix} J' & J & 1 \\ -M' & M & \nu \end{pmatrix} \begin{pmatrix} s & l & J \\ J' & 1 & s' \end{pmatrix} \begin{cases} 1 & 1/2 & 1/2 \\ 1/2 & s & s' \end{cases} \times \left[\frac{e_{1}}{m_{1}} + (-1)^{s+"s'} \frac{e_{2}}{m_{2}} \right] M_{if},$$
(2.9)

где для равного массового кварка интеграл наложения M определяется в виде:

$$M_{if} = (1 + k_Q) \int_0^\infty dr \cdot r^2 \psi_{nl}(r) \psi'_{n'l}(r) j_0(\frac{kr}{2}) + O(k/m), \qquad (2.10)$$

где $j_0(z)$ - сферическая функция Бесселя нулевого порядка.

Излучающий уровень перехода свободным вращением между начальным состоянием $(n'^{2s'+1}J)$, i, и конечным состоянием $(n'^{2s'+1}J')$, f, может быть определено следующим образом:

$$\Gamma\left(i \xrightarrow{M_1} f + \gamma\right) = \frac{4\alpha \cdot e_Q^2}{3m_Q^2} (2J' + 1)k^3 S_{if}^M \left| M_{if}^2 \right|, \tag{2.11}$$

где $S_{ii}^{M} = S_{fi}^{M}$ статистический фактор, который определяется следующим образом:

$$S_{if}^{M} = 6(2s+1)(2s'+1) \begin{cases} J & 1 & J' \\ s' & l & s \end{cases}^{2} \begin{cases} 1 & 1/2 & 1/2 \\ 1/2 & s' & s \end{cases}^{2}.$$
 (2.12)

При переходе l = 0, $S_{if}^{M} = 1$.

3 Определение ширины радиационного и лептонного распада мезонов

3.1 Радиационный распад

В этом пункте приводим определение матричного элемента, который представлен в (2.6), для этого в общем виде для любых переходов ширину определяем следующим образом:

$$I_{n_2 l_2 m_2}^{n_1 l_1 m_1, \lambda} = \int_{0}^{\infty} dr \cdot r^2 \Psi_{n_2 l_2 m_2}^*(r) \cdot r^{\lambda} \cdot \Psi_{n_1 l_1 m_1}(r), \qquad (3.1)$$

где параметры $\lambda=1,2,...$, и n_1,n_2 - радиальные квантовые числа начального и конечного состояния соответственно.

Детали вычисления такого интеграла приводим в рамках осцилляторного представления (ОП) [9]. В соответствии с ОП, проведем замену переменных следующим образом (детали см. в [10, 11]):

$$r=q^{2\rho}, \quad \Psi \Rightarrow \Psi(q^2)=q^{2\rho \cdot \ell} \cdot \Phi(q^2),$$
 (3.2)

где ρ - вариационный параметр, который связанно с асимптотическим поведением волновой функции на больших расстояниях. Проведем замену переменных после некоторых упрощений, из (3.1), имеем:

$$I_{n_{2}l_{2}m_{2}}^{n_{1}l_{1}m_{1},\lambda} = \frac{1}{\sqrt{\langle n_{1}|q^{2(2\rho-1)}|n_{1}\rangle\langle n_{2}|q^{2(2\rho-1)}|n_{2}\rangle}} \int_{0}^{\infty} dq \cdot q^{2+4\rho l_{2}+2\rho-1} \Phi_{n_{1}}^{*}(q^{2}) \cdot q^{2\rho(\lambda+l_{1}-l_{2}+2)} \cdot \Phi_{n_{2}}(q^{2}), \quad (3.3)$$

где радиальная волновая функция $\Phi_n(q^2)$ в вспомогательном d- мерном пространстве R^d и зависит только от радиуса q^2 , которая определяется с помощью операторов рождения a^+ и уничтожения a в виде:

$$\Phi_n(q^2) = C_n \cdot (a^+ a^+) n |0\rangle_{d}, \qquad (3.4)$$

где C_n - нормировочный коэффициент радиальной ВФ

$$C_n = \sqrt{\frac{\Gamma\left(\frac{d}{2}\right)}{2^{2n} n! \Gamma\left(\frac{d}{2} + n\right)}}$$
(3.5)

 $|0\rangle_d$ - ВФ основного состояния в d -мерном пространстве, которая определяется следующим образом:

$$\left|0\right\rangle_{d} = \left(\frac{\omega_{n}}{\pi}\right)^{\frac{d}{4}} e^{-\frac{\omega_{n}}{2}q^{2}}, \quad \left\langle 0\right|0\right\rangle = 1. \tag{3.6}$$

d - размерность вспомогательного пространства равен:

$$d = 2 + 2\rho + 4\rho \cdot \ell . \tag{3.7}$$

Для дальнейших вычислений используем представление в нормальной форме канонических переменных, через операторы рождения и уничтожения [9]. Величина $q^{2\tau}$ - в нормальной форме представляется в виде:

$$q^{2\tau} = \int_{0}^{\infty} \frac{dx}{\Gamma(-\tau)} x^{-1-\tau} \cdot e^{-xq^2} = \int_{0}^{\infty} \frac{dx}{\Gamma(-\tau)} x^{-1-\tau} \cdot \int \left(\frac{d\eta}{\sqrt{\pi}}\right)^d e^{-\eta^2(1+x/\omega)} : e^{-2i\sqrt{x}(q\eta)} : \tag{3.8}$$

Из (3.3) видно, что существует два основных состояния, которые определены в d_1, d_2 -пространстве, соответственно для начального и конечного состояний. Для вычисления инте-

грала представленной в (3.3) прежде всего необходимо рассмотреть следующие интеграл по отдельности.

$$\widetilde{I}_{n_1,n_2} = \int_{0}^{\infty} dq \cdot q^{2+4\rho l_2 + 2\rho - 1} \Phi_{n_1}^* (q^2) q^{2\rho(\lambda + l_1 - l_2 + 2) - 2} \Phi_{n_2} (q^2)$$
(3.9)

Учитывая (3.4), (3.5) из (3.9) после некоторых упрощений имеем:

$$\widetilde{I}_{n_{1},n_{2}} = \sqrt{\frac{\Gamma\left(\frac{d_{1}}{2}\right)}{2^{2n_{1}}n_{1}!\Gamma\left(\frac{d_{1}}{2}+n_{1}\right)} \cdot \frac{\Gamma\left(\frac{d_{2}}{2}\right)}{2^{2n_{2}}n_{2}!\Gamma\left(\frac{d_{2}}{2}+n_{2}\right)}} \cdot \int_{0}^{\infty} dq \cdot q^{d_{2}-1} \cdot \left\langle 0\right|_{d_{1}} (aa)^{n_{1}} \times q^{2\rho(\lambda+l_{1}-l_{2}-2)-2} \left(a^{+}a^{+}\right)^{n_{2}} \left|0\right\rangle_{d_{2}}$$
(3.10)

Для проведения необходимых вычислений должны осуществить переход из одного пространства в другое для того, чтобы основное состояние определялась в пространстве с одинаковой размерностью. Например: из d_1 -пространства в d_2 . Учитывая этого переходного интеграла (3.10) можно записать следующее:

$$I_{if}(\lambda) = \sqrt{\frac{\rho_{1}}{\rho_{2}}} \cdot \frac{1}{\sqrt{\langle n_{1} | q^{2(2\rho_{1}-1)} | n_{1} \rangle \langle n_{2} | q^{2(2\rho_{2}-1)} | n_{2} \rangle}} \cdot C_{n_{1}} \cdot C_{n_{2}} \cdot \left(\frac{\omega_{n_{1}}}{\pi}\right)^{\frac{d_{1}}{4}} \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{1}}}\right)^{\frac{a_{2}}{4}} \cdot \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \cdot \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{a_{2}}{4}}$$

где $\left|0\right\rangle_d$ -основное состояние, которая определяется в $\left|d\right|_2$ -мерном пространстве.

Учитывая представление (3.8), проводя простые упрощения из (3.10) получаем:

$$I_{if}(\lambda) = \sqrt{\frac{\rho_{1}}{\rho_{2}}} \cdot \frac{1}{\sqrt{\langle n_{1} | q^{2(2\rho_{1}-1)} | n_{1} \rangle \langle n_{2} | q^{2(2\rho_{2}-1)} | n_{2} \rangle}} \cdot C_{n_{1}} \cdot C_{n_{2}} \cdot \left(\frac{\omega_{n_{1}}}{\pi}\right)^{\frac{d_{1}}{4}} \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{1}{2}\right)^{\frac{d_{1}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{1}{2}\right)^{\frac{d_{1}}{4}} \cdot \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \cdot \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \cdot \left(\frac{\pi}{\omega_{n_{2}}}\right)^{\frac{d_{2}}{4}} \times \left(\frac{\pi}{\omega_{n_{2$$

где C_{n_1} , C_{n_2} - нормировочные коэффициенты, которые представлены в (3.5), а размерности вспомогательных пространств определяются как:

$$d_1 = 2 + 2\rho_1 + 4\rho_1 l_1, \ d_2 = 2 + 2\rho_2 + 4\rho_2 l_2, \ y = x + \frac{\omega_{n_1} - \omega_{n_2}}{2\omega_{n_2}}.$$
 (3.13)

При дальнейших вычислениях переходим к безразмерным величинам:

$$\omega_j^{\rho_j} = Z_j \cdot \sqrt{\sigma}; \qquad \mu = Z \cdot u \cdot \sqrt{\sigma};$$
 (3.14)

Значения параметров Z_j , ρ_j для различных кварковых состояний приведены в работах [12]. Из (3.9) видно, что для любых орбитальных и радиальных возбужденных состояний сможем определить среднее значение $\langle n|q^{2\tau}|n\rangle$. Для проведений численных вычислений проводим следующие значения параметров. Например: для значения $n_1=n_2=0$, т.е. только для орбитального возбужденного состояния

$$\langle 0|q^{2\tau}|0\rangle = \frac{1}{\omega^{\tau}} \cdot \frac{\Gamma\left(\frac{d}{2} + \tau\right)}{\Gamma\left(\frac{d}{2}\right)}$$
(3.15)

а для значения $n_1 = n_2 = 1$, т.е. с радиальным возбуждением

$$\left\langle 1 \middle| q^{2\tau} \middle| 1 \right\rangle = \frac{1}{\omega^{\tau}} \cdot \frac{\Gamma\left(\frac{d}{2} + \tau\right)}{\Gamma\left(\frac{d}{2} + 1\right)} \cdot \left[\frac{d}{2} + \tau(1 + \tau)\right] \tag{3.16}$$

Разность между размерностями вспомогательного пространства равна:

$$d_1 - d_2 = 2[\rho_1 \rho_2 + 2\rho_1 l_1 - 2\rho_2 l_2]. \tag{3.17}$$

Вместо параметров ρ_1 , ρ_2 , которые связанны с асимптотическими поведениями волновой функции на больших расстояниях. в дальнейших расчетах будем использовать следующий средний параметр:

$$\rho = \frac{\rho_1 + \rho_2}{2} \,. \tag{3.18}$$

Учитывая (3.16) и после некоторых математических выкладок из (3.12) окончательно получаем для интеграла переходного матричного элемента. Тогда уравнение (3.11) примет следующий вид:

$$I_{i \to f}(\lambda) = \pi^{\pi^{\rho(l_2 - l_1)}} \cdot \left[\frac{\Gamma(1 + \rho + 2\rho l_1)}{\Gamma(3\rho + 2\rho l_1)} \cdot \frac{\Gamma^2(3\rho_2 + \rho l_2 + \rho l_1 + \lambda \rho_2)}{\Gamma(1 + \rho + 2\rho l_2)\Gamma(3\rho + \rho l_2)} \right]^{1/2} \times \frac{1}{\sigma^{\frac{\lambda}{2}}} \cdot \frac{1}{\left[1 + \frac{Z_1 - Z_2}{2Z_2}\right]^{3\rho + \rho_2 + \rho l_1 + \lambda \rho}} \cdot \frac{Z_1 \frac{3 + 2l_1}{2}}{Z_2 \frac{5 + 2l_2}{2}}.$$
(3.19)

Значение параметров M_i , M_f , Z_1 , Z_2 , ρ , l_1 , l_2 рассчитаны в работе [13], для различных состояний мезонов, которые состоят из различных ароматов кварка.

По результатам расчетов для радиационного распада мезонов получены численные значения, приведены в Таблице 1. В Таблице 1 также приведены результаты других теоретических и экспериментальных работ.

Таблица 1 — Ширина радиационного распада $(\bar{c}c)$, $(\bar{b}b)$ и $(b\bar{c})$ мезонов

	•	1 '' ()' (, , ,
$1^3 P_0 \rightarrow 1^3 S_1$	k,MeV	Γ_{E_1} , keV	$\Gamma_{E_1}(\exp), keV$
$(c\bar{c})$ [14]		105.2	92.4±42
$(c\bar{c})$ [our]	308.621	115.949	
$(b\overline{b})$ [15]	391	29.5	
$(b\overline{b})$ [our]	330.475	33	
$(b\bar{c})$ [16]	370.	43	
$(b\bar{c})$ [our]	357.621	43.48	

3.2 Лептонный распад

Теперь приступим к рассмотрению распада мезонов на электрон-позитронную пару. Этот распад происходит через обмен виртуального фотона. Диагармма Фейнмана такого распада представлено на рисунке 1.

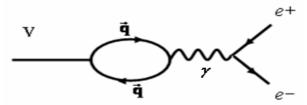


Рис.1. Диаграмма Фейнмана для $V \rightarrow e^+e^-$ распада. V - векторный потенциал, q - поле кварка, γ - виртуальный фотон, e^+e^- - электрон-позитронная пара

В рамках КТП, прежде всего, вычисляют диаграмму Фейнмана кварка-антикварка для фермионной петли. Эта диаграмма диктует о возможности такого распада только для векторного мезона. Инвариантный матричный элемент выражается через g_{Vp} константу перехода векторного мезона на фотон.

С другой стороны, эту константу можно выразить через В Φ , которая определяется из УШ. Этот вопрос хорошо изложен в [14] и ширина распада записывается в виде:

$$\Gamma(V \to e^+ e^-) = \frac{4\pi\alpha_{em}^2}{m_a^2} \cdot Q_q^2 |\Psi_0(0)|^2.$$
 (3.20)

Таким образом, если известна $B\Phi$ в начале координат, то можно опаределить ширину данного распада. Для этого, мы запишем УШ:

$$H\Psi = E\Psi . (3.21)$$

В работах [15,16] с учетом спин-спинового и непертурбативного взаимодействия определены ВФ мезонов состоящих из легко-легких и тяжело-тяжелых кварков. Мы будем изучать ВФ спин-триплетного состояния для основного состояния. В нашем подходе ВФ представляется в виде:

$$\Psi(\vec{r}) = Y_{lm}(\theta, \varphi)\Psi_{nl}(r), \qquad (3.22)$$

где угловая и радиальная части ВФ нормированы по отдельности.

Тогда нормированная ВФ для основного состояния записывается следующим образом:

$$\Psi(\vec{r}) = \frac{1}{\sqrt{4\pi}} \Psi_0(r), \tag{3.23}$$

где $\Psi_0(r)$ - радиальная ВФ состояния и удовлетворяет условию:

$$I = C_N^2 \int_0^\infty dr \cdot r^2 \Psi_0^*(r) \Psi_0(r) = 1.$$
 (3.24)

Здесь C_N^2 -нормировочный коэффициент радиальной ВФ. В нашем подходе радиальная ВФ определена в d-мерном вспомогательном пространстве. Поэтому, для определения коэффициента нормировки прежде всего переходим в d-мерное пространство. Проводим замену переменных:

$$r = q^{2\rho}; \quad \Psi(r) \Longrightarrow q^{2\rho l} \varphi_{n_r}(q^2).$$
 (3.25)

Подставим (3.25) в (3.24) после некоторых упрощений имеем:

$$I = C_N^2 \cdot 2\rho \int_0^\infty dq \cdot q^{d-1} \varphi_{n_r}^*(r) q^{2(2\rho+1)} \varphi_{n_r}(q^1)$$
(3.26)

где $d = 2 + 2\rho + 4\rho l$.

Мы рассматриваем ВФ основного состояния. В этом состоянии ВФ в ОП равна:

$$\Phi(q^2) \approx e^{-\frac{1}{2}\omega q^2} \tag{3.27}$$

Учитывая (3.27) из (3.26) получим:

$$I = C_N^2 \cdot \frac{\rho \Gamma\left(\frac{d}{2} + 2\rho - 1\right)}{\omega^{\frac{d}{2} + 2\rho - 1}} = 1.$$
 (3.28)

Из (3.28) определим C_N и учитывая (3.23) для ВФ в начале координат получаем:

$$|\Psi(0)|^2 = \frac{1}{4\pi} \cdot \frac{\omega^{\frac{d}{2} + 2\rho - 1}}{\rho \Gamma(\frac{d}{2} + 2\rho - 1)}$$
 (3.29)

В нашем подходе частота осциллятора параметризована в виде:

$$\omega^{\rho} = Z \cdot \sqrt{\sigma} \tag{3.30}$$

где σ -натяжение струны, а Z некоторый постоянный параметр для конкретного случая определена в работах [16,17]. В нашем случае окончательно для основного состояния получим:

$$|\Psi_0(0)|^2 = \frac{Z^2 \sigma^{3/2}}{4\pi\rho\Gamma(3\rho)}$$
 (3.31)

Тогда ширина распада векторного мезона на электрон-позитронную пару записывается в виде:

$$\Gamma(V \to e^+ e^-) = \frac{\alpha_{em}^2}{m_q^2} \cdot Q^2 \cdot \frac{Z^3 \cdot \sigma^{3/2}}{\rho \cdot \Gamma(3\rho)}$$
(3.32)

Таблица 2 – Ширина лептонного распада

Переход	$\Gamma(\exp), keV$ [17]	$\Gamma(\exp), keV$ [18]	$\Gamma(our)$, keV
$\psi \rightarrow e^+e^-$	4.72±0.35	5.54±1.96	4.6
$\phi \rightarrow l^+ l^-$	2.97±0.04	2.86±0.19	2.74
$\rho \rightarrow e^+ e^-$	6.77±0.32	7.04±0.06	7.295
$\gamma \rightarrow e^+e^-$	1.34±0.04	1.34±0.018	1.16

Заключение

- 1. Предложена схема вычисления ширины E_1 и M_1 переходов. Ширина переходов E_1 и M_1 определяется аналитически, в нашем подходе волновая функция связанной системы определяется с учетом релятивисткой поправки, поэтому в наших расчетах ширина перехода определяется с учетом релятивисткой поправки. Предложен метод определения радиального перехода, который обусловлен E_1 и M_1 переходом. Также определен импульс фотона с учетом релятивистских поправок. Наши результаты показали, что импульс фотона для возбужденного и основного состояния между собой отличаются. Полученные численные результаты, для ширины E_1 перехода, которые представлены в таблице 1, что свидетельствует удовлетворительному согласию наших данных с экспериментальными и теоретическими данными других авторов.
- 2. Определена волновая функция в начале системы отчета. Волновая функция в начале системы отчета, т.е. r=0 определена для основного состояния. Вычислена ширина лептонного распада мезонов состоящего из легко легких, тяжело тяжелых кварков. Наши результаты согласуются с экспериментальными результатами и теоретическими данными других авторов.

Литература

- 1. G.T.Bodwin, S.J.Brodsky, and G.P.Lepage // Phys.Rev.Lett.47 (1981) 1799.
- 2. J.-w. Qiu and G.Sterman (private communication).
- 3. M.Banaka, I.Z.Rothstein, and M.B.Wise // Phys.Lett.B.408 (1997) 373 [hep-ph/9605023].
- 4. J.-w. Qiu and G.Sterman, Int.J.Mod.Phys.E 12 (2003) 149 [hep-ph/0111002].
- 5. N.Brambilla, M.Kramer, R.Mussa, A.Vairo. Heavy quarkonium physics. // GERN-2005-005, 20 June 2005.
- 6. Dineykhan M., S. A. Zhaugasheva S.A., Toinbaeva N.SH. //Jour. Phys.B: At.Mol.Opt. Phys. 2010. V.43. P.015003. -7pp; Динейхан М., Жаугашева С.А.//ЭЧАЯ ,V.42, Вып.3 (в печати).
 - 7. H.Jung, Comput. Phys. Commun. 143 (2002) 100 [hep-ph/0109102].
- 8. Salam A. Nonpolynomial Lagrangians. Renormalization and Gravity. New York: Gordon and Breach Science Publ 1971.
- 9. Dineykhan M., Efimov G.V., Ganbold G. and . Nedelko S.N., Oscillator representation in quantum physics, (Lecture Notes in Physics, Springer-Verlag, Berlin, 1995), V. 26.
- 10. Salam A. Nonpolynomial Lagrangians. Renormalization and Gravity. New York: Gordon and Breach Science Publ 1971.
- 11. Dineykhan M., Efimov G. V. // Rep. Math. Phys. 1995. V.36, P.287; //Yad. Fiz. 1996. V.59.
- 12. Dineykhan M., Efimov G. V. // Rep. Math. Phys. 1995. V.36, P.287; //Yad. Fiz. 1996. V.59, 862; Dineykhan M.// Z. Phys. 1997. V. D41. P.77; Dineykhan M., Nazmitdinov R. G.// Yad. Fiz. 1999. V. 62. P.143; Dineykhan M, Zhaugasheva, S. A., Nazmitdinov, R. G.// JETP. 2001. V.119. P.1210.
 - 13. Жаугашева С.А., Нурбакова Г.С. Вестник КазНПУ им. Абая. №3, (в печати).
 - 14. Suraj N. Gupta and James M.Johnson. Physical Reviev D 49, №3 (1994).
 - 15. Ebert D . Physical Reviev D 67, 014027 (2003)
 - 16. Amsler C., et al., Physics Letters B 667, 1 (1998).
 - 17. Amsler C., et al., Physics Letters B 667, 1 (2008).

МЕЗОНДАРДЫҢ РАДИАЦИЯЛЫҚ ЖӘНЕ ЛЕПТОНДЫҚ ЫДЫРАУЫ

С.А. Жауғашева, Г.С. Нұрбақова, Г. Сайдуллаева

Ауыр кварктардан тұратын мезондардың радиациялық ыдыраулары қарастырылған. Бастапқы күйден соңғы күйге өтудің матрицалық элементінің ауысулары релятивистік түзетулерді ескере отырып анықталған. $(\bar{c}c)$, $(\bar{b}b)$ және $(c\bar{b})$ мезондар үшін Е1 және ЕМ ауысуларының енін есептеу жолдары келтірілген.

RADIATIVE AND LEPTONIC DECAY OF MESONS

S.A. Zhaugasheva, G.S. Nurbakova, G. Saidullaeva

Radiative and leptonic decay mesons consisting from heavy and light quarks are considered. The transition matrix element from an initial state to a final state taking into account the relativistic corrections are determined. The widths of E1 transitions and leptonic decays of mesons consisting of light and heavy quarks is defined.