О РАЗНОСТИ РЕШЕНИЙ СИНГУЛЯРНО ВОЗМУЩЕННОЙ И НЕВОЗМУЩЕННОЙ ИНТЕГРАЛЬНЫХ КРАЕВЫХ ЗАДАЧ В ТЕОРИИ ПОЛУПРОВОДНИКОВ

Е.И. Имангалиев

Казахский национальный университет имени аль-Фараби, г.Алматы

В работе получена асимптотическая сходимость решения сингулярно возмущенной интегральной краевой задачи для интегро-дифференциального уравнения типа Фредгольма к решению вырожденной интегральной краевой задачи.

Многие задачи науки и техники сводятся к исследованию линейных дифференциальных уравнений с переменными коэффициентами. Так как лишь в исключительных случаях удается получить точное решение такого уравнения (например, только для линейного дифференциального уравнения первого порядка удается получить точное решение), то приходится прибегать к различным приближенным методам решения. Среди приближенных методов решения дифференциальных уравнений важное место занимают асимптотические метолы.

Важность асимптотических методов в теории дифференциальных уравнений была ясно осознана математиками во второй половине прошлого столетия. Однако только в последние пятьдесят лет стало ясно, насколько они важны для понимания структуры решений дифференциальных уравнений, содержащих малый параметр при старшей производной. Они неизбежно возникают во многих прикладных задачах, кинетике и горении, в задачах распространения тепла в тонких телах, в теории полупроводников, в квантовой механике, в биофизике и многих других отраслях науки и технике.

Рассмотрим следующее линейное интегро-дифференциальное уравнение третьего порядка типа Фредгольма

$$L_{\varepsilon}y \equiv \varepsilon y''' + A(t)y'' + B(t)y' + C(t)y =$$

$$= F(t) + \int_{0}^{1} \left[K_{0}(t,x)y(x,\varepsilon) + K_{1}(t,x)y'(x,\varepsilon) + K_{2}(t,x)y''(x,\varepsilon) \right] dx$$
(1)

с интегральными краевыми условиями вида

$$H_{0}y = y(0,\varepsilon) - \int_{0}^{1} [b_{0}(t)y(t,\varepsilon) + b_{1}(t)y'(t,\varepsilon) + b_{2}(t)y''(t,\varepsilon)]dt = a_{0},$$

$$H_{1}y = y'(0,\varepsilon) - \int_{0}^{1} [c_{0}(t)y(t,\varepsilon) + c_{1}(t)y'(t,\varepsilon) + c_{2}(t)y''(t,\varepsilon)]dt = a_{1},$$

$$H_{2}y = y(1,\varepsilon) - \int_{0}^{1} [d_{0}(t)y(t,\varepsilon) + d_{1}(t)y'(t,\varepsilon) + d_{2}(t)y''(t,\varepsilon)]dt = a_{2},$$
(2)

где $\varepsilon>0$ — малый параметр, a_i , $i=\overline{0,2}$ — известные постоянные, A(t), B(t), C(t), F(t), $b_i(t)$, $c_i(t)$, $d_i(t)$, $K_i(t,x)$, $i=\overline{0,2}$ — некоторые известные функции, определенные в области $D=\left\{0\leq t\leq 1,\ 0\leq x\leq 1\right\}$.

Предположим, что:

- І. Функции A(t), B(t), C(t), F(t), $b_i(t)$, $c_i(t)$, $d_i(t)$, $K_i(t,x)$, $i=\overline{0,2}$ достаточно гладкие в области D.
 - II. Функция A(t) удовлетворяет неравенству: $A(t) \ge \gamma = const > 0$, $0 \le t \le 1$.
 - III. Справедливо неравенство: $\lambda_1(t) \neq \lambda_2(t)$,
- где $\lambda_i(t)$, i = 1,2 корни уравнения $A(t)\lambda^2(t) + B(t)\lambda(t) + C(t) = 0$.

IV. Справедливы следующие неравенства:

$$\Delta_2^{\rm l}b_2(0) + \Delta_2^{\rm 0}(1-c_2(0)) + \Delta_1^{\rm 0}d_2(0) \neq 0\;,\; b_2(0) \neq 0\;,\; c_2(0) \neq 1\;,\; d_2(0) \neq 0\;,$$
 где
$$\Delta_1^{\rm 0} = \begin{vmatrix} H_0y_1(t) & H_0y_2(t) \\ H_1y_1(t) & H_1y_2(t) \end{vmatrix} ,\; \Delta_2^{\rm 0} = \begin{vmatrix} H_0y_1(t) & H_0y_2(t) \\ H_2y_1(t) & H_2y_2(t) \end{vmatrix} ,\; \Delta_2^{\rm l} = \begin{vmatrix} H_1y_1(t) & H_1y_2(t) \\ H_2y_1(t) & H_2y_2(t) \end{vmatrix} ,$$

 $y_i(t)$, i = 1,2 являются фундаментальной системой решений уравнения

$$L_0 y \equiv A(t)y'' + B(t)y' + C(t)y = 0.$$

V. Число 1 при достаточно малых ε не является собственным значением ядра $J(t,x,\varepsilon)$

$$J(t,x,\varepsilon) = \int_{0}^{1} \left[K_0(t,x)G(x,s,\varepsilon) + K_1(t,x)G'(x,s,\varepsilon) + K_2(t,x)G''(x,s,\varepsilon) \right] dx,$$

где $G(t,s,\varepsilon)$ – функция Грина задачи (1), (2) и имеет вид:

$$\begin{split} G(t,s,\varepsilon) &= \frac{1}{\varepsilon} \Bigg[\Phi_1(t,\varepsilon) \int_s^1 \left[b_0(t) K_3(t,s,\varepsilon) + b_1(t) K_3'(t,s,\varepsilon) + b_2(t) K_3''(t,s,\varepsilon) \right] dt + \\ &+ \Phi_2(t,\varepsilon) \int_s^1 \left[c_0(t) K_3(t,s,\varepsilon) + c_1(t) K_3'(t,s,\varepsilon) + c_2(t) K_3''(t,s,\varepsilon) \right] dt + \\ &+ \Phi_3(t,\varepsilon) \Bigg[\int_s^1 \left[d_0(t) K_3(t,s,\varepsilon) + d_1(t) K_3'(t,s,\varepsilon) + d_2(t) K_3''(t,s,\varepsilon) \right] dt - K_3(1,s,\varepsilon) \Bigg] \Bigg], \ t \leq s \,, \\ G(t,s,\varepsilon) &= \frac{1}{\varepsilon} \Bigg[\Phi_1(t,\varepsilon) \int_s^1 \left[b_0(t) K_3(t,s,\varepsilon) + b_1(t) K_3'(t,s,\varepsilon) + b_2(t) K_3''(t,s,\varepsilon) \right] dt + \\ &+ \Phi_2(t,\varepsilon) \int_s^1 \left[c_0(t) K_3(t,s,\varepsilon) + c_1(t) K_3'(t,s,\varepsilon) + c_2(t) K_3''(t,s,\varepsilon) \right] dt + \\ &+ \Phi_3(t,\varepsilon) \Bigg[\int_s^1 \left[d_0(t) K_3(t,s,\varepsilon) + d_1(t) K_3'(t,s,\varepsilon) + d_2(t) K_3''(t,s,\varepsilon) \right] dt - K_3(1,s,\varepsilon) \Bigg] \Bigg] + \frac{1}{\varepsilon} K_3(t,s,\varepsilon) \,, \ s \leq t \,. \end{split}$$

Исследуем вопрос о предельном переходе при стремлении малого параметра ε к нулю. Стремится ли к решению $\overline{y}(t)$ невозмущенной (вырожденной) задачи решение $y(t,\varepsilon)$ сингулярно возмущенной краевой задачи (1), (2).

Предположим, что:

VI. Справедливо неравенство:

$$\widetilde{\Delta} = \begin{vmatrix} 1 - \widetilde{\Delta}_{1b} & -\widetilde{\Delta}_{2b} \\ -\widetilde{\Delta}_{1c} & 1 - \widetilde{\Delta}_{2c} \end{vmatrix} = \left(1 - \widetilde{\Delta}_{1b}\right)\left(1 - \widetilde{\Delta}_{2c}\right) - \widetilde{\Delta}_{2b}\widetilde{\Delta}_{1c} \neq 0,$$

$$\widetilde{\Delta}_{ib} = \int_{0}^{1} \left[b_{0}(t) \overline{K}_{i}(t,0) + b_{1}(t) \overline{K}_{i}'(t,0) + b_{2}(t) \overline{K}_{i}''(t,0) \right] dt +
+ \int_{0}^{1} \left[b_{2}(s) + \int_{s}^{1} \left(b_{0}(t) \overline{K}_{2}(t,s) + b_{1}(t) \overline{K}_{2}'(t,s) + b_{2}(t) \overline{K}_{2}''(t,s) \right) dt \right] \frac{\sigma_{i}(s)}{A(s)} ds ,
\widetilde{\Delta}_{ic} = \int_{0}^{1} \left[c_{0}(t) \overline{K}_{i}(t,0) + c_{1}(t) \overline{K}_{i}'(t,0) + c_{2}(t) \overline{K}_{i}''(t,0) \right] dt +
+ \int_{0}^{1} \left[c_{2}(s) + \int_{s}^{1} \left(c_{0}(t) \overline{K}_{2}(t,s) + c_{1}(t) \overline{K}_{2}'(t,s) + c_{2}(t) \overline{K}_{2}''(t,s) \right) dt \right] \frac{\sigma_{i}(s)}{A(s)} ds , i = 1,2 ,$$

здесь

$$\sigma_i(t) = \varphi_i(t) + \int_0^1 \overline{R}(t, x)\varphi_i(x) dx$$

$$\varphi_{i}(t) = \int_{0}^{1} \left[K_{0}(t,x) \overline{K}_{i}(x,0) + K_{1}(t,x) \overline{K}_{i}'(x,0) + K_{2}(t,x) \overline{K}_{i}''(x,0) \right] dx, \ i = 1,2,$$

 $\overline{R}(t,x)$ резольвента ядра $\overline{J}(t,x)$

$$\overline{J}(t,s) = \frac{\overline{K}_2(t,s)}{A(s)} + \frac{1}{A(s)} \int_0^1 \left[K_0(t,x) \overline{K}_2(x,s) + K_1(t,x) \overline{K}_2'(x,s) + K_2(t,x) \overline{K}_2''(x,0) \right] dx.$$

В дальнейшем покажем, решение $y(t,\varepsilon)$ краевой задачи (1), (2) при $\varepsilon \to 0$ не будет стремиться к решению обычного вырожденного уравнения, получаемого из (1) при $\varepsilon = 0$, а будет стремиться к решению измененного вырожденного уравнения вида

$$L_{0}\overline{y}(t) = A(t)\overline{y}'' + B(t)\overline{y}' + C(t)\overline{y} = F(t) + \Delta(t) + \int_{0}^{1} \left[K_{0}(t,x)\overline{y}(x) + K_{1}(t,x)\overline{y}'(x) + K_{2}(t,x)\overline{y}''(x) \right] dx,$$
(3)

с измененными краевыми условиями

$$H_{0}\overline{y} = \overline{y}(0) - \int_{0}^{1} \left[b_{0}(t)\overline{y}(t) + b_{1}(t)\overline{y}'(t) + b_{2}(t)\overline{y}''(t)\right]dt = a_{0} + \Delta_{0},$$

$$H_{1}\overline{y} = \overline{y}'(0) - \int_{0}^{1} \left[c_{0}(t)\overline{y}(t) + c_{1}(t)\overline{y}'(t) + c_{2}(t)\overline{y}''(t)\right]dt = a_{1} + \Delta_{1},$$
(4)

где $\Delta(t)$ — начальный скачок интегрального члена уравнения (1) и Δ_0 , Δ_1 — начальные скачки решения задачи в точке t=0 при $\varepsilon \to 0$, подлежащие определению.

Заметим, что $\bar{y}(t)$ вырожденного уравнения (3), также не удовлетворяет условию (2) в точке t=1, а удовлетворяет другому условию

$$H_{1}\overline{y} = \overline{y}'(0) - \int_{0}^{1} \left[c_{0}(t)\overline{y}(t) + c_{1}(t)\overline{y}'(t) + c_{2}(t)\overline{y}''(t)\right]dt = a_{1} + \Delta_{1},$$

$$H_{2}\overline{y} = \overline{y}(1) - \int_{0}^{1} \left[d_{0}(t)\overline{y}(t) + d_{1}(t)\overline{y}'(t) + d_{2}(t)\overline{y}''(t)\right]dt = a_{2} + \Delta_{2},$$
(5)

где Δ_2 — начальный скачок решения задачи в точке t=1 при $\varepsilon \to 0$, подлежащий определению.

Имеет место

Теорема Пусть выполнены условия I – VI. Тогда для разности $y(t,\varepsilon) - \overline{y}(t)$ между решениями сингулярно возмущенной краевой задачи (1), (2) и невозмущенной задачи (3), (4) справедливы асимптотические при достаточно малых ε оценки:

$$|y(t,\varepsilon) - \overline{y}(t)| \le C\varepsilon,$$

$$|y'(t,\varepsilon) - \overline{y}'(t)| \le C \left[\varepsilon + \left(|a_0| + |a_1| + |a_2|\right) \exp\left(-\gamma \frac{t}{\varepsilon}\right)\right],$$

$$|y'(t,\varepsilon) - \overline{y}'(t)| \le \frac{C}{\varepsilon} \left[\varepsilon \left(\varepsilon + \exp\left(-\gamma \frac{t}{\varepsilon}\right)\right) + \left(|a_0| + |a_1| + |a_2|\right) \exp\left(-\gamma \frac{t}{\varepsilon}\right)\right], \quad 0 \le t \le 1,$$
(6)

где C > 0 — некоторая постоянная и $\gamma > 0$ — постоянная из условия II, не зависящие от ε .

Литература

- 1. Вишик М.И., Люстерник Л.А. Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром // УМН. 1957, т.12. №5. С. 3-122. Новиков П.С. Об единственности решения обратной задачи теории потенциала // ДАН СССР. 1938. Т. 18. С.152-155.
- 2. Ломов С.А. Введение в общую теорию сингулярных возмущений. М.: Наука, 1981. 400 с.

СИНГУЛЯРЛЫ АУЫТҚАҒАН ЖӘНЕ АУЫТҚЫМАҒАН ИНТЕГРАЛДЫҚ ШЕКАРАЛЫҚ ЕСЕПТЕРДІҢ ШЕШІМДЕРІНІҢ АЙЫРЫМЫ ТУРАЛЫ

Е.И. Иманғалиев

Жұмыста Фредгольм типті сызықтық интегро дифференциалдық теңдеу үшін сингулярлы ауытқыған интегралдық шекаралық есептің шешімі ауытқымаған интегралдық шекаралық есептің шешімі асимптотикалық ұмтылуы көрсетілген.

ABOUT DIFFERENCE OF SOLUTION SINGULAR DISTURBED AND UNDISTURBED BOUNDARY PROBLEMS

Y.I. Imangaliyev

In work obtained the asymptotical convergence of solution singular disturbed integral boundary problem for linear integral differential equation of type Fredholm to solution undisturbed integral boundary problem.