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SPECTRAL DENSITY OF STATES IN QUANTUM NANOCLUSTERS 
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Al-Farabi Kazakh National University, Almaty 

 
The density of states is studied by using disordered Hamiltonians for quantum systems. The electron 

spectrum of nanoclusters is calculated for various type of disorder.  
 
The knowledge of the electron spectra in semiconductor structures of nanosizes is very 

important in modern condensed matter physics. This is related to the fact that due to quantum 
effects on the submicron scale the distance between the discrete neighbouring energy levels 
becomes less that the experimental temperature range, and less that the energy of inelastic scattering 
of electron-electron interaction. One of the powerful and constructive approaches for calculating the 
spectral density of states is direct modelling on the basis of Hamiltonians. In this paper we study the 
single-electron density of states of quantum systems in the presence of various types of impurity 
potential disorder.  

We consider the spectrum of quantum particles in a random potential using the Anderson 
model. The Hamiltonian of the model on a simple cubic lattice is given by 
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where 
+
σnc  creates an electron on the n-th site of a lattice. <n,m> implies that the second sum runs 

over those n and m which are nearest neighbours (the coordination number is Z = 6). The random 
potential is introduced via the on-site energies ne  (diagonal disorder). They are uniformly and 
independently distributed in the interval from -W/2 to W/2, i.e. according to the `box' distribution.  
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Here W denotes the strength of disorder. An Aharonov-Bohm flux φ is applied in all three directions 
(three-component flux). The transfer integral tφ = t exp(-2πiφa/L), contains a phase factor which is 
given by the flux in units of the flux quantum φo = h/e. In what follows we assume t and the lattice 
spacing a to be the units of energy and spatial distance, respectively. For W = 0 the Hamiltonian 
Eq.(1) corresponds to a conventional tight-binding model (TBM). The critical disorder at the band 
centre of this model is equal to Wc = 16.5 for φ = 0. In addition to the `box distribution', we probe 
another diagonal disorder, i.e. the model with the Gaussian distribution of the energies ne : 
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The width of the Gaussian distribution is scaled in such a way that the second moments of PB(W)  
and PG(W) coincide: σB(W) = σG(W) = W2/12. Correspondingly, at the band centre when E = 0 the 
critical disorder for this model Wc =20.9 [1]. 

The Hamiltonian Eq.(1) is numerically diagonalized for simple cubic nanoclusters of 
different linear sizes L ranging from L = 5 to 32. The computational procedure is based on the 
Lanczos algorithm for Hermitian matrices. First, we calculate the eigenvalues ei with the precision 
less than 10-9 and construct histograms for the density of states ρ(E) which is defined as follows: 
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here ρ(E) is a global quantity, which is averaged of the whole volume of the nanocluster. Figures 1 
and 2 demonstrate the spectral density of states ρ(E) at various disorder W in the nanocluster of size 
L=20 with periodic boundary conditions for the uniform and the Gaussian distributions, 
respectively. 

 
FIG. 1. The density of states ρ(E) of the Anderson model for different strength of randomness W with the uniform 

distribution of the on-site energies Eq.(2). The data are obtained by direct diagonalization of a cubic quantum 
nanoclusters of linear size L = 20 for the Aharonov-Bohm flux φ= 0 and averaged over many realizations. Solid line: 
result of the tight-binding model (W = 0). Only the positive energy part is shown, due to symmetry with respect to the 

band centre E = 0. Inset: The density of states at the band centre ρ(0) as a function of disorder W. Solid line is the 
interpolation formula Eq.(5), dashed line is the Mott suggestion ρM(0) 

 
FIG. 2. The same as Fig. 1 for the Gaussian distribution of the on-site energies according to Eq.(3) 

 
The oscillations of ρ(E) for small disorder W = 2 around the TBM result as one can observe 

in Fig.1 are due to finite size effects. At such a small disorder the mean free path is much larger 
than the system size L = 20. In fact, the spectrum of a clean (W = 0) finite system consists of a 
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countable number of discrete highly degenerated levels, because the quasi-momentum operator 
commutes with the Hamiltonian. Clearly, the number of the energy levels, their degeneracy and 
positions depend on the size L, the lattice structure and the type of boundary conditions [2]. The 
TBM result is only applicable in the thermodynamic limit. In the case of small randomness the 
Bruillion zone is only slightly destroyed and the quasi-momentum is still a good quantum number. 
Due to non-zero disorder the degeneracy is lifted yielding a set of overlapping sub-bands. The shape 
of the density of states ρ(E) is symmetric around the band centre E = 0, if the total number of the 
lattice sites L3 is even or infinite.  

With further increasing randomness W and the size L the overlap becomes stronger leading 
to smoother behaviour of ρ(E). It is clear, that the forms of the density of states for sufficiently 
small W (W <2Z) are almost equivalent for the both disorder models PB and PG. Close to the critical 
disorder Wc = 16.5 for the box distribution the density of states is nearly constant in a wide central 
part of the spectrum and is insensitive to the system size, provided that the size is sufficiently large. 
Compared to the Gaussian distribution, it starts to decay drastically with the energy E only in the 
vicinity of the band edges. This is due to a strict energy-range confinement of PB, which allows for 
the exact bounds of the band edge, in contrast to PG.  

The typical energy range of this decay is of order of the hopping integral t and does not 
depend on disorder for W > t, while the band edge grows linearly with W. Obviously, in the limit of 
W >>2Z the shape of ρ(E) for both disorder models must tend towards the `bare' distributions PB 

and PG, because the diagonal part of the Hamiltonian Eq.(1) dominates over the hopping elements. 
The disorder dependence of the density of states exactly at the band centre ρ(E = 0) is shown in the 
inset of Fig. 1. It has been suggested by Mott [3], that ρ(0) varies with increasing W according to 
ρM(0) = (B2 + W2)-1/2, with B = 2Z being the width of the unperturbed band. In fact, we have found 
that the numerical data are described better by the following interpolation expression: 

 

,
)()0(

1)(
22 WP

WP
BTBM

G −− +
=

ρ      (5) 

 
where ρTBM(0) = 0.148 and PB(W) = 1/W is simply the distribution of the on-site energies Eq.(2). We 
have checked for larger sizes L >20 that the data fall onto the same curve irrespective to change of 
L. Notably, the equation (5) is of practical use for our unfolding procedure. The above interpolation 
works quite satisfactorily also for the Gaussian distribution (see inset of Fig. 2), the term PB being 
substituted by PG(e=0).  The results of our calculations for different non-zero values φ of the 
Aharonov-Bohm flux indicate that the averaged density of states is flux-invariant, although the 
positions of individual eigenvalues, as well as their short-range correlations depend on φ.  

It should be noted that despite the present numerical data for the shape of ρ(E) for various W 
are in reasonable agreement with the analytical results obtained within the coherent-phase 
approximation [4], a detailed comparative analysis is still required including also other types of 
diagonal randomness, e.g. the binary and the Lorentzian distributions of the on-site energies.  

It is interesting to compare the density of states of the Anderson model with that of the 
random matrix theory (RMT). We have diagonalized the hermitian matrices whose all entries hi;j , 
with i; j ≤ N are distributed around zero according to the box distribution Eq.(2) with the variance 
σB = 1/12 (i.e. with W = 1). For both the orthogonal (β= 1) and the unitary (β = 2) matrices of size N 
=100 the density of states ρ(E) is averaged over 10000 random realizations (and for N = 1000 over 
20 realizations). As shown in Fig. 3, the results for different N and for both types of symmetry are 
well described by the semicircle formula valid for the density of states of RMT (see also refs in 
book [5]) in the limit N >> 1.  
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FIG. 3. The density of states ρ(E) of the random matrices of different size NxN calculated numerically for the 

orthogonal (N=100 and 1000) and the unitary symmetry (N = 100) with the box distribution for all their elements Eq.(2) 
W = 1. Continuous lines are the semicircle density of states ρRMT(E) Eq.(6). Only positive half of the band is shown 

because ρ(E) is symmetric with respect to E = 0. Inset: relative deviations δρ(E) of the numerical results from ρRMT(E) 
for N = 100 for orthogonal (+) and unitary (x) symmetry. Energy is rescaled according to E → E/(4βNσB)-1/2 (see text) 

 

After rescaling E → E/(4βNσB)-1/2  the equation (6) becomes universal ,1)( 2EERMT −=ρ  
irrespective to the size N and the symmetry β. One observes, however, the deviations from ρRMT(E), 
particularly at the band edges, which diminish with increasing the size of the matrices N. The 
relative difference δρ(E) = ρ(E)/ ρRMT(E) -1 between our finite-N results and the limiting expression 
is shown in the inset of Fig. 2 for the two types of symmerty. For example, the typical systematic 
discrepancy for N = 100 lies within 1-2% in the central 3/4-part of the spectrum. The relative 
deviation becomes stronger close to the band edges. 

 
References 
1. Bulka B., Schreiber M., Kramer B., Z. Phys. 1987, 66, 21-29. 
2. Zharekeshev I. Kh., Kramer B., Scaling of level statistics at the disorder-induced metal--

insulator transition // Phys. Rev. B, 1995, 51, 17239-17242 
3. Mott N. F., Davis E.A. Electronic processes in non-crystalline materials, Clarendon Press, 

Oxford, 1971, 456p.   
4. Krohas J. // Physica A, 1990, 167, 231-236. 
5. Mehta M.L., Random Matrices, Academic Press, Boston, 1991, 523p. 

  
КВАНТТЫҚ НАНОКЛАСТЕРЛАРДАҒЫ КҮЙЛЕРДІҢ СПЕКТРЛІК ТЫҒЫЗДЫҒЫ 

 
И.Х. Жəрекешев 

 
Кванттық жүйілерге арналған реттелмеген гамильтониандарды қолданып күйлердін тығыздығы 

зерттелінеді. Нанокластерлердің электрондық спектрі ретсіздіктің əртүрлі түрлеріне арналып 
есептелінеді. 
 

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ СОСТОЯНИЙ В КВАНТОВЫХ НАНОКЛАСТЕРАХ 
 

И.Х. Жарекешев 
 

Изучается плотность состояний с использованием неупорядоченных гамильтонианов для 
квантовых систем. Электронный спектр нанокластеров вычисляется для различных типов 
беспорядка. 


