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LOCALIZATION TRAJECTORY AND CRITICAL INDEX 
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Electron localization in chaotic systems is studied by using the method of transfer-matrices. The 

critical index of the localization length is found. 
 
 Introduction 

A phenomenon of localization of a quantum particle by a random impurity potential has 
been a very intriguing subject for several past decades and is still one of present active research. 
After formulating the problem by Anderson, developing a field-theoretical formalism by Wegner 
followed by the renormalization group analysis in 2 + ε dimensions and, finally, introducing the 
hypothesis of the one-parameter scaling major properties of the localization length in disordered 
systems have been established. One of the central ideas is that for arbitrary small randomness, 
electron wave functions can be either localized or extended, depending on the number of 
dimensions. Basically the scaling theory [1] predicts a discontinuous transition from extended to 
localized states for any spatial dimension exceeding two (d > 2).  

This disorder-driven transition between metallic and insulating phases can be described by a 
typical set of parameters characteristic of a critical phenomenon, in analogy with conventional 
quantum phase transitions known from statistical mechanics. For example, the correlation length of 
the transition asymptotically diverges as a power law with the critical exponent ν. According to the 
nonlinear σ-model the exponent is solely defined by the dimensionality and the fundamental 
symmetry irrespective of microscopic details (potential distribution, lattice structure, type of 
disorder, anisotropy etc.).  

Although substantial progress in the understanding of critical behaviour at the disorder-
induced metal insulator transition has been achieved, nevertheless several issues are still considered 
as being open and unsolved. Among them are effects of boundary conditions and the validity of 
one-parameter scaling near the band edges. The former became a long-standing puzzle, particularly 
in numerical calculations, when different types of boundary conditions have led to unambiguous 
results, doubting in the justification of finite-size scaling scenarios. The latter has been investigated 
by the transfer-matrix (TM) computations for the energies beyond the unperturbed band, however 
no clear critical behaviour was found and a reliable determination of ν failed. Moreover, the 
applicability of the scaling hypothesis far from the band centre has been questioned in recent studies 
[3].  

Practically the critical parameters, like the critical exponent and the critical line of the phase 
diagram of the localization trajectory fc(E,W) = 0 in the energy-disorder plane, can be explored by 
performing numerical-scaling simulations, since standard analytical approaches in many cases 
break down close to the transition. Under certain symmetry conditions it is natural to expect that the 
influence of boundaries on scaling properties become negligible, as the size of the system grows. 
Eventually in the thermodynamic limit the critical parameters should not depend on boundary 
conditions, as assumed by universality of the critical point. To the best of our knowledge, the 
invariance of the critical exponent ν with respect to change of the type of boundary conditions has 
not been examined yet.  

Despite that the independence of the critical exponent on the distribution of the random 
potential has been verified, various numerical works concluded that ν changes by varying the 
position of the mobility edge, in contradiction to claims of the field theory. Therefore, investigating 
the detailed scaling behaviour along the phase localization trajectory is imperative since it gives 
insights into universal character of the Anderson transition.  
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Previous computational efforts using the transfer-matrix method have mostly been 
concentrated on the centre of the energy band E = 0, yielding the value ν= 1.5 [3]. Here the scaling 
functions for various symmetry classes and the corresponding critical exponents have been 
determined with a high accuracy.  

 
Boundary conditions 
We choose two types of boundary conditions, periodic BC and Dirichlet BC, which belong 

to the same symmetry class (orthogonal), but are of essentially different topology.  First we 
investigate the influence of different types of boundary conditions on the localization properties of 
the 3D disordered systems. The Green's function method combined with the transfer-matrix 
computations is used to obtain the localization length and the corresponding scaling function. In 
addition, the scaling behaviour is re-examined not only near the band centre of the Anderson model, 
but also near the band edges. The calculations of the localization length in quasi-1D geometry have 
been performed for the bar-shaped system of different cross-section ranging from L = 4 up to 14. 
We use the Anderson model with diagonal disorder: 
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Here the electron states |r> are defined on the sites of a simple cubic lattice. The site energies εr are 
random entities, which are distributed uniformly in the interval from –W/2 to W/2. As for the tight-
binding approximation, the coupling only between nearest neighbouring r and r + Λ is taken into 
account. All energies are measured in units of the hopping matrix element V and lengths in units of 
the lattice constant a = 1.  

Our numerical algorithm is based on the evaluating the Green's functions GM(L,W,E) of a 
one-particle with energy E, travelling in a bar-shaped disordered system of a length L and of a finite 
cross-section M2, which connected to the two semi-infinite perfect leads. The localization length 
can be obtained in the quasi-1D limit of a long stripe or of a bar, L >> 1, using the Oseledec's 
theorem [2]. Then one has the following: 
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Thus, the inverse localization length is simply the exponential decay rate of the spatial extension of 
GM(L,W,E). In practice, the study of the Green's functions is mapped into the equivalent transfer-
matrix calculations. The latter yields the smallest positive Lyapunov exponent identified as λM

-1. 
Due to the convergence process of the underlying iteration procedure in the limit of large L, the 
statistical quantity λM becomes self-averaging. Thus the conventional averaging over a large 
ensemble of samples can be eliminated.  

As a check, we have first examined the case of zero magnetic field α = 0, extensively 
investigated previously. The reduced localization length ΛM is computed as a function of the 
disorder strength W at a given energy E = 0, as shown in Fig.1. The curves for different sample 
sizes M = 4 - 18 all cross at a fixed point W = Wc, giving ΛM = 0.58, which is independent of the 
size M within the statistical error bars. At W < Wc, the data for ΛM continuously increases with 
increasing M, while at W > Wc the sign of the size effect is opposite. This is a typical critical 
behaviour of the disorder induced metal-insulator transition. The critical value of disorder can be 
estimated as Wc = 16.5.  
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FIG.1 Renormalized localization length Λ as a function of disorder W for two different types of the boundary 

conditions. Data correspond to the energy E = 0 for various system sizes L = 4,6,8,10,12 and 14 (from 
smaller to larger steepness) 

 
All the data for the reduced localization length ΛM obtained by the TM-method have 

accuracy between 0.1% and 0.25% for the size M ranging from 4 up to 18. To get this accuracy 
around 3106 iterations are necessary. Further increase of the system size above M = 18 requires an 
improvement of the statistical accuracy of the raw data. Practically, the computation efforts (the 
CPU time) grow proportionally to M7/ε2, where ε = δΛM / ΛM is the relative statistical accuracy. The 
coefficient of proportionality depends on the type of the problem and on the efficiency of the 
computer and the optimization of the algorithm. For instance, on Unix 4.0F it is around 10-9 for the 
centre of the band E = 0 and the disorder W = 16,5, if the CPU-time is measured in seconds. 
Therefore the large-scale calculations are extremely time-consuming due to rather slow 
convergence process. Already for the size M = 30 and the error ε = 0:5% the one-processor CPU-
time on Alpha-DEC computer (Unix 4.0F) exceeds several days.  

 
Localization trajectory 
We have calculated Λ for negative part of energies (near the left band edge). One can see 

that there is no common crossing point for the sizes considered. Therefore it is not feasible to detect 
critical behaviour, in spite of high accuracy. For even linear sizes L = 2n, where n is integer, the 
behaviour of Λ is symmetric with respect to the band centre E = 0, while for the odd sizes L = 2n-1 
the energy dependence of Λ for negative energies differs from that for positive E.  

 

 
FIG. 2. Renormalized localization length Λ as a function of energy E near the left and right band edges for 

disorder strength W = 12. Insets show the density of states ρ(E) for L = 5 at the same disorder W 
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However this difference diminishes with increasing the size of the system. One can expect 
that for considerably larger systems one could observe the common crossing point and locate the 
critical energy more precisely. The reason for this asymmetry is related to the asymmetry of the 
density of states for the odd L. In order to check this relation we have computed the exact energy 
levels corresponding to the Anderson Hamiltonian with periodic boundary conditions. The 
eigenvalues have been obtained by the direct diagonalization, by using the Lanczos algorithm. The 
insets in Fig.2 demonstrate the density of states for L = 5, which is different depending on the sign 
of the energy E. For the even L the density of states is symmetric around E = 0, as expected. The 
localization trajectory is shown in Fig. 4 both in the presence of the magnetic field and without 
magnetic field. 

 

 
 

Fig. 4. The phase diagram of the Anderson model (localization trajectory). Open dots correspond to zero 
magnetic field. Full dots show the critical points f(Ec,Wc) for a magnetic field α = 0:25 

 
Critical exponent  
The question arises: what are the criteria to decide which way of analyzing the data is most 

reliable? The best criterion to my opinion is to be closer to the critical point and to operate carefully 
with the error bars. In general, from any statistical analysis of numerical data one could not say that 
the critical parameters equal with 100% (i.e. certainly) to some values, even though corresponding 
error bars are also determined. The problem of reliability of outcoming data should be always 
controlled by several independent methods. 

The figure 5 demonstrates the disorder dependence of the localization length needed for the 
critical exponent ν and obtained from direct computer simulations for 3D disordered systems 
modelled by the Anderson Hamiltonian. It demonstrates a power law divergence of the localization 
length with the power equalling to critical exponent ν. This is one of the most distinguished 
achievements, since establishing the single-parameter scaling theory of localization by Abrahams 
and co-workers in 1979 [1]. It manifests itself a variety of calculation methods and disorder models 
used. Investigated are the problems with the time-reversal (no magnetic field or impurities) and the 
spin-rotational symmetry (no spin-orbit interaction). One can see from the fig. 5 that the most 
advanced and successful method is of the transfer matrices (TM).  

An analytical approach based on the extension of 1D to higher dimensions has yielded the 
estimate ν =1,6, though relying on uncontrolled approximations. Recently, Kawabata has suggested 
a simple form for the β- function starting from the self-consistent considerations and derived a value 
ν= 1 + 1/√3 = 1,58, which strikingly well coincides with the latest findings by numerical modelling.  

By combining the renormalization group treatment with the perturbative expansion to lowest 
order other researchers [4] have numerically extracted the value of the critical exponent νRG = 1,59, 
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which was surprisingly close, for the first time, to the contemporary result, corresponding to our 
findings. Though being intensively investigated since the late fifties, the problem of the disorder-
induced metal-insulator transition (MIT) of non-interacting electrons in three dimensions (3D) can 
be considered as being still unsolved. 

 
FIG. 5. The localization length ξ as a function of disorder W. Solid straight line is the weak-localization limit 

dotted line is the strong localization limit, and dashed line is the power-law, respectively. Inset: enlarged 
region in the very vicinity of W = Wc (linear scale). Our results (•) are shown in comparison with those from 

Ref.[3, 4] 
 

Conclusions 
The influence of different types of boundary conditions on the Anderson transition is 

investigated by using the transfer matrix method. The finite-size scaling analysis is performed along 
the mobility edge trajectory, between the centre and the edge of the energy band. The critical 
exponent of the localization length proved to be independent of the type of boundary conditions, as 
well as of the energy, confirming the universality of the Anderson transition. By considering the 
lowest-order corrections to the single-parameter scaling, the critical exponent of the localization 
length is determined. 
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ЛОКАЛИЗАЦИЯ ТРАЕКТОРИЯСЫ ЖƏНЕ СЫНДЫҚ ИНДЕКСІ 
 

И.Х. Жəрекешев 
Трансфер-матрицалар əдісімен хаостық жүйілердің электрондық локализациясы зерттелінеді. 

Локализация ұзындығының сындық индексі табылған. 
 
 

ТРАЕКТОРИЯ ЛОКАЛИЗАЦИИ И КРИТИЧЕСКИЙ ИНДЕКС 
 

И.Х. Жарекешев 
Изучается электронная локализация хаотических систем методом трасфер-матриц. Найден 

критический индекс длины локализации.  


