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Level curvature distribution in the Quantum Hall effect

YK 538.9, 539.21:537.1

I. Kh. Zharekeshev

Al-Farabi Kazakh National University, Kazakhstan, Almaty
E-mail: isa2020@mail.ru

Level curvature distribution in the Quantum Hall effect

The parametric dynamics of the energy spectrum in the regime of the integer Quantum Hall effect is studied. The
second derivative of the electron levels is calculated with respect to the external magnetic flux. It is shown that the
distribution of the level curvatures in the center of the Landau band exhibits universal size-independent behavior. The
non-interactive electron gas in two-dimensional disordered systems subject to a strong perpendicular magnetic field is
modeled with the goal to explore the response of the energy spectrum to an external perturbation. Physically, the role
of the external perturbation can be played by an additional Aharonov-Bohm flux applied parallel to the system. One
of the central questions to answer is how the parametric spectral correlation functions are distinct from those
belonging to the conventional classes of global universality. It is expected that the level curvature distribution will
compose a new unitary class which is specific for the Quantum Hall Effect regime.

Key words: clectron conductivity, critical phenomena, two-dimensional electron gas, quantum Hall effect, critical
index, energy level statistics, unitary ensemble.

N.X. XKopekemen
Xo1abIH KBAaHTTBIK d(deKTicinme IHeprusi 1eHreiiepi KHCHIKTHIFBIHBIH YJecTipyi

XonaplH KBaHTTHIK TONbIKOMmeMIi dddexTici peXuMiHAeri SHEPrus CIEKTPIHIH HapaMeTpiiK KO3FaJbIChl
3epTTENreH. DIEKTPOHJBIK JICHIeilIep/iiH CHIPTKBI MArHUTTIK arbIHBIHBIH ©3repyiHe OalIaHbICTBI EKiHII TYBIHIBI
OpBIHZApbl €CenTeN LIbFapblIraH. JIeHreilaep KUCHIKTBIFBIHBIH YJecTipinyi JlaHIay 30HACBIHBIH OpPTAJbIFbIHIA
ombeban  euIeMIi-Toyenci3 Kyl TaHBITATHIHIBIFBL aHbIKTanFaH. KYIITI HepHeHIuKyIspiabl MarHuT —epicine
YIIBIpaFraH eKieNIeMAl peTTelIMEreH jKyHeIeri e3apa ocep eTHEHTIH DJICKTPOHABIK Ia3 MOJENbICHIeH. DHeprus
CIICKTPIHIH CBIPTKbI KO3yFa acepi 3eprrenreH. OU3HKaNbIK TYPFbIAa CBIPTKbI YHBITKY/IBIH POIIH Kyiere mapauienb
TipkenreH AapoHOB-BOMHBIH KOCBIMIIIA MAarHUTTIK aFbIHBI aTKapybl bIKTHMa. KpHTHKAJIBIK YIIECTipyai KYHACTIKTI
skahaHIBIK yHUBEpcall KJacTapra THICTI YJIeCcTipyJep/ieH aifblpa TaHy ©3€KTi Mocelenepi 0ipi Goysin TaObLIambl.
JleHreiinep KUCBHIKTBIFBIHBIH YJIECTIpidyl TeK XOJUIIBIH KBAaHTTHIK PEKHMIHE TOH JKaHA YHHTAPJIBIK Kiacc OOJIbIN
KeJEeTiHi KyTitye.

Tyiiin ce30ep: SNEKTPOHIBIK OTKI3TILITIK, KPUTHKAJBIK KYOBUIBIC, eKieNIeMIi JJIeKTPOHABIK ra3, XOJUIIbIH
KBaHTTHIK 2 (EKTici, IIMEKTPOHIBIK JTOKATH3ALHS.

N.X. XKapekernies
Pacnpenenenue KpUBU3HBI YPOBHEI JHEPruu B KBaHTOBOM 3¢ dexre Xo1a

N3yuaercs napaMeTpu4eckoe JBIDKEHHE CIIEKTpa SHEPrud B pexuMe LenouucieHHoro sddexra Xomia.
Beraucnsercst BTopasi MPOU3BOAHAS MOJOKEHUIN 3IEKTPOHHBIX YPOBHEH IO OTHOMIEHHIO K U3MEHEHHIO BHEIIHETO
MarHUTHOTO MOTOKa. [lokas3aHo, 9TO pacmpeneneHne KPHUBU3HBI YPOBHEH B IeHTpe 30HBI JlaHmay mposBisier
YHHUBEPCAIbHOE DPa3MEPHO-HE3aBHCUMOE IIOBEICHHE. OJICKTPOHHBIH HEB3aWMOICUCTBYIOIINI Ta3 B IBYMEpPHOM
HEYHOPSIOYEHHOU CUCTEME, IOABEPKCHHBI CUIBHOMY MEPIEHAUKYIIPHOMY MarHUTHOMY IOJII0, MOJEJIUPYETCS C
LEeJIBI0 MCCIIEIOBATh OTKIIMK CIIEKTpa SHEPTUH Ha BHeIIHee Bo30yxaeHne. Ou3nuecku poib BHEITHETO BO3MYIIICHHS
MOJKET UIpaTh JOMNOJIHUTEIBHBI MarHUTHBIN MOTOK AapoHoBa-boma, ImpuiiokeHHbIN NapamienbHo cucreme. Onun
U3 LEHTPAJbHBIX BONPOCOB SIBISIETCS KaK KPUTHUYECKOE DAaCNpelielIeHHe, OTIMYAIOIIEe OT pacHpeleleH i,
MIPUHAJIeKAIINX K OOBIYHBIM KJIaccaM IJI00aJIbHOH yHHBepcatbHOCTU. OXHMIASTCs, YTO pacHpeesiecHHe KPHBU3HBI
YpPOBHEl COCTaBIIsIET HOBBII YHUTAPHBIH Kilacc, KOTOPbIH crieruryeH Ui pexxuMa KBaHTOBOTO ¢ dekra Xora.
Kniouesnvie cnoga: 3neKTpoHHAs] IPOBOIUMOCTb, KDUTHUECKHE SIBICHUS, IBYMEPHBIN 3JIEKTPOHHBII a3, KBAHTOBBIH
3¢ ekt Xoma, FIEKTPOHHAS JTOKATA3AIIHSL.
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Introduction

The eigenvalue dynamics of the spectra of
disordered systems in dependence of an external
parameter has attracted considerable interest in
recent years. It has been motivated by the fact that
the conductance though the system is closely
related with the sensitivity of its eigenvalue
spectrum to a perturbation. It this respect the
works of Altshuler et. al. [1] should be mentioned
in particular, who showed that parametric
dynamics of disordered solids is governed by the
global universality laws.

Investigating statistics of the parametrical
energy-level motion proved to be one of the
fundamental issues in mesoscopic physics. The
distributions of level velocities and level

curvatures exhibit generic behavior which is
inherent not only for disordered metals, but also
for chaotic dynamical problems, as well as for
nuclear and atomic physics. It became clear that
study of parametric variations of energetic
quantities leads to new, very interesting and
unexpected results. Mush of important work has
been performed in the past [2-7].

It was shown first by Simons and Altshuler [3-
6], that the parametric spectral correlations are
independent of properties of the particular system,
and of the nature of perturbation. By using the
supersymmetry technique for disordered metals
they have found a wuniversal form for the
expression of the velocity-velocity correlation
function:

C(x,X ,0xi(X),0xEk(X ) = (Ox€i(X)Oxer(X ). (1)

The averaging denoted by 6..c may be
performed over the interval of the energy
spectrum, and/or over a finite range of the
external parameter, and/or over the ensemble of
random realizations.

This universality holds not only for disordered
conductors, but also for the whole variety of non-
integrable systems such as a hydrogen atom in a
strong magnetic field, chaotic billiards,
mesoscopic rings in Aharonov-Bohm flux.
Basically, it plays a role of an indicator of
quantum chaos. The invariant functional form of
the velocity-velocity correlator implies that any
statistical property of a set of random functions
ei(x) is entirely determined by type of the Dyson
ensemble characterizing the system.

We consider a quantum disordered system
which is described by the Hamiltonian

A =R, + X o

E (X
gi(x):%a

the specific information about the sample can be
eliminated from the correlation function of the
electron density of states. The question arises
whether or not the statistical behavior of
parameter-induced variations in ¢;(X) is sensitive
to detailed properties of the system under
consideration.
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and is subject upon an external perturbation
controlled by some parameter X. Physically this
parameter can represent a magnetic or an electric
field, gate voltage, the strength of the random
potential or the shape of the sample edges. The
energy spectrum of the system as a function of
parameter X disperse into a sequence of bands
described by a set of randomly fluctuating
functions Ei(X). Generally, this sequence can be
identified as a motion of fictitious one-
dimensional particles, where the external
parameter X plays a role of fictitious time. The
parametrical motion of energy levels can be
considered as a dynamical problem of these
fictitious particles, which interact with each other.

After rescaling the energies with respect to the
mean level spacing A and modifying the external
perturbation parameter X by the generalized
conductance C(0) (see the definition below)

x=X,/C(0) (3)

There is a number of important entities
characterizing the parametrical dependence of the
energy spectrum. One of them is called the level
velocity defined as the first derivative of the level
position g(x) with respect to the dimensionless
parameter Xx.
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_ 1 0¢,(x)

0.6,(x) = 2 “)

Another one is known as a level curvature
determined as the second derivative of gi(x) with
respect to x.

1 0%,(x)

k, =
/) A ox?

®)

where A is the mean level spacing.
Boundary conditions imposed on the electron
wave function

Y(x+L) = Y(x)exp(2mip)

can be interpreted as the application of an
Aharonov-Bohm flux (AB-flux) ¢ on the system:
¢ = ¢/¢g, where ¢y = hc/e is the flux quantum.
Here L is the linear size of system under
consideration.

The response of the wavefunction to a change
in the phase of the boundary conditions can be
quantitatively measured by the zero-flux level
curvature determined as a second derivative of the
function E;(¢) with respect to the AB-flux ¢:

1 _
PGOE(k) =§(1+k2) 3/23

which is normalized and symmetric with respect
to zero curvature k = 0. Interestingly that all even
momenmta are divergent <k**>—soo0, where n > 1 is

P (K)= %(1 +K* /47" |k

because the typical Ky : = exp<InK> = 1, while
the average <K> = 2. The useful relation between
the typical and the average modulo is

<K% >=—

1 0°E,(¢)
o= 2 Ei )
BRUNRPYE (6)

$=0

for an individual energy level E;. Due to an
argument by Thouless the properly averaged
curvatures can be assumed to be proportional to
the conductance of the sample. In what follows
we omit the indexing i and consider the curvature
as a statistical variable {k}.

Ergodic regime

The power-law asymptotic behavior of the
probability distribution of the level curvatures for
GOE, GUE, and GSE ensembles of the RMT has
been predicted by Gaspard et al [8]:

1
Pﬂ(k)oc‘k‘WJ

(7)
where the ‘repulsion parameter' b = 1,2 and 4 for
the GOE, GUE, and GSE ensembles, respectively.

Concerning the complete functional form, it
was conjectured by Zakrzewski and DeLande [9]
and proved rigorously by von Oppen [10-11] that
the level curvature distribution for the GOE case
(b=1) is given by the generalized Cauchy
distribution

®)

integer. Since all odd momenta of the distribution
Eq. (8) are zeros, it is convenient to deal with the
double absolute value K: =2 |k| of the curvature:

) )
ko : = exp<Infk| > = <|k| >/2. (10)
The fractional momenta are given by
2 (a+1) (-«
r r , -l<a<2, (11
Jr U2 2

The variance of the curvature logarithm is constant 6*(InK) = 1%/6.
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We start with the Anderson Hamiltonian

_ +
H = Zgnanaana +
io

where the random site energies &; are distributed
uniformly in the interval [-W/2,W/2]. Vj is the
hopping element between neighboring sites 1 and j
in the lattice. Hopping elements allows one to
extract the phase factor, so that Eq.(12)
corresponds to the one parameter group of
Hamiltonians, which can be expressed in a simple
matrix form

H=H,+eV+e V", (13)
We diagonalize numerically the Hamiltonian
for a disordered sample with simple cubic
structure of various sizes ranging between L = 50
and 200 measured in units of the lattice constant a.
The strength of the disordered potential spreads
from W = 2 to 10. For each combination {L,W}
the number of ensemble realizations is chosen
such that at least 20000 eigenvalues have been
calculated. The exact diagonalization is performed
by the Lanczos algorithm implemented for
eigenvalue problem of hermitian matrices.

Level curvature distribution
The distribution of level curvatures in the

+ +
Z Vij(@a,, +a,.a;,),

(12)

<i,j>,0

delocalized regime is known to follow the RMT
result: P(k) = (1+k?)™>? (the orthogonal case),
where k = KA/(no) [9]. In the insulating regime,
the distribution is logarithmically-normal due to
exponential localization of the wave func-
tions [12-14]. Both of the limiting distribution
functions have been numerically confirmed for the
Anderson model [15,16]. We compute the
disorder-induced transition of P(k) which accom-
panies the AT. We plot the distribution of InK in
Fig.1 for various sizes and three different values
of the disorder. Indeed, in the diffusive regime the
data for P(InK) (right curves) are equivalent to
each other, except of the shift in <InK >. After
rescaling k = K/exp<InK>, they coincide with the
RMT expression independently of L and W. In the
insulating regime, P(InK) are well approximated
by the Gaussian statistics. When approaching the
transition, the distribution P(InK) exhibits critical
behavior. For finite sizes it experiences a
continuous crossover between the above limits,
which is governed by the single scaling variable
L/x. At W=W, all curves fall onto one common L-
invariant function, which is found to be well
interpolated by

Pc(k) — A(1+k2/60)—3(1)/2’
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Figure 1 — Distribution of level curvature P(k) in the lowest Landau level in the quantum Hall effect for various system sizes L
(shown by different colours). All points lie on a single curve corresponding to the universality class called Critical Unitary Ensemble
(CUE). Inset: the same dependence in log-log scale.
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with the normalization constant A. The only
fitting parameter here proved to equal o=1.2. A
similar formula for the critical P.(k) has been
obtained also in [15], but with a slightly different
®. Note that asymptotic form of P.(k) for large

curvatures is the same as in the metallic regime
P(k)~k>.

Scaling of level curvatures. We focus now on
the orthogonal situation, i.e. at zero flux, when the
time-reversal symmetry is preserved. First, we cal-
culate the dependence of the mean value of the loga-
rithm of the level curvature K ¢ A'1|d2 Ey/dfls- o on
the system size and disorder. The data have been

averaged over many realizations and over central
part of the spectrum, so that about 10* curvatures
are obtained for each pair of L and W. The results
demonstrate behavior of the geometric mean of
the curvature which is typical for the conductance
in accordance with the Thouless conjecture [17].
In the insulating regime <InK > ~ -L/x, where x is
the localization length, while on the metallic side
Ohm's law exp<InK > ~ L/W? is obtained. At W =
W, the value <InK > is not sensitive to L. In other
words, a common intersection of curves for
different sizes indicates the position of the
mobility edge. Our results are similar to those in
papers [15,16].

Mo :
0.2 10

P J'r?'}r’:]

(N 2

W
3
0.3 b ===
]
10 s
metall

0.2 insulator

P(ln c* |

0.1

In c*

Figure 2 — Distribution function of level curvatures P(/n ¢) in the vicinity of the critical energy Quantum Hall-to-insulator
transition in the lowest Landau band for the size of the two-dimensional system L=200 for various disorder W (shown by symbols of
different lines). Below is shown the distribution of normalized curvatures P(In c*)

A sufficiently high accuracy allows us,
however, to perform in addition a reliable

standard one-parameter scaling procedure. From
the above data one can determine in this way the
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scaling function for the average level curvature
and the disorder dependence of the correlation
length. Moreover, in the diffusive regime it has
been possible to extract the weak localization
corrections proportional to e”/(nh) (L/I-1), with /
being the mean free path of an electron. We have
found the critical exponent v = 1.6 +0.1, which is
quite close to that obtained recently by the
transfer-matrix  technique [18], but exceeds
slightly the value found from the calculation of
the level spacing distribution [19].

At present the following open questions are of
particular interest:

1. How do the probability distribution
functions of the level curvatures and of the level
velocities behave in the crossover regime between
plateaus in the IQHE?

2. What are their asymptotic forms?

3. Whether the level curvature distribution has
non-analyticity at zero-curvature? If yes, how
large is “the branching number' ?

4. How is the branching number linked to the
multifractality spectrum?

5. How do the parametric statistics depends on
the index of the Landau Level?

6. What is the velocity-velocity auto-
correlation function in the center of the lowest
Landau Level?

7. How does the level curvature distribution
scale when moving towards the Landau band
edge?

The abovementioned issues will be dealt in the
out next investigations.

Summary

Parametric statistics of eigenvalues in the
critical energy range of the Landau levels are
studied. The system in the limit of widely
disorder-broadened Landau bands is investigated
using exact numerical diagonalization techniques
for lattice models. The simulation methodology
used is similar to that published in our previous
work [20] devoted to the three-dimensional
orthogonal case. We examine scaling properties of
several statistical spectral measures at the
transitions between the Hall plateaus including:
the distributions of the level curvatures and
scaling properties of the P(/n ¢). Using the finite-
size analysis for lowest Landau levels, a set of
universal constants are extracted: the branching
number of the eigenvalue curvatures and the
critical exponent of the localization length. Scale-
invariant behavior of the parametrical statistics
characteristic of the localization-delocalization
transition reveals the universal nature of the
integer quantum Hall effect.
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