НОВЫЕ СХЕМЫ АХРОМАТИЧЕСКИХСТАТИЧЕСКИХ МАСС-СПЕКТРОМЕТРОВ

О.А. Байсанов, Г.А Доскеев¹, И.Ф. Спивак-Лавров¹ Военный институт Сил воздушной обороны, г. Актобе

Боенный институт Сил возоушной боороны, г. Актобе

¹Актюбинский государственный университет им. К. Жубанова, г.Актобе

Предложены и рассчитаны новые схемы статических секторных масс-спектрометров, в которых для ахроматизации используются нетрадиционные электростатические системы, состоящие из электростатической призмы и трансаксиальной линзы.

В работах [1, 2] исследовались корпускулярно-оптические свойства ахроматического масс-спектрометра, в котором в комбинации с секторным однородным магнитным полем используется иммерсионная электростатическая призма с тремя электродами и иммерсионная рассеивающая трансаксиальная линза, расположенная непосредственно перед входом в магнитное поле (рис. 1).

Рис. 1. Принципиальная схема масс-спектрометра с электростатической призмой, трансаксиальной линзой и секторным однородным магнитным полем

Выходящий из точки A ионного источника 1 расходящийся пучок ионов сначала ускоряется в V_1/V_0 раз, преломляясь на границе электродов 2, 3, а потом два раза замедляется сначала до потенциала V_2 на границе электродов 3, 4 и затем до потенциала V_0 на границе электродов 4, 5 рассеивающей иммерсионной линзы. Отметим, что электрод 4 является общим электродом призмы и линзы, но для облегчения юстировки он может быть разделен на два электрода. После прохождения электростатической системы ионный пучок попадает в секторное однородное магнитное поле 6, фокусирующее его в щель 7 приемника ионов.

Электростатическая призма полностью задается следующими параметрами: углом i падения осевой траектории пучка на эффективную преломляющую грань призмы, отношением потенциалов $\frac{V_1}{V_0}$ и $\frac{V_2}{V_0}$, расстоянием l_u от источника ионов до призмы и размером призмы r_e . Нами были выбраны следующие значения этих параметров: $i = 75^\circ$,

 $l_u = 1,60, \ l_e = 0,156, \ R_e = r_e = 1,0, \ u \ \frac{V_1}{V_0} = 20.$ За единицу длины здесь и в дальнейшем принято

значение r_0 радиуса кривизны траектории в магнитном поле.

Путем математического и компьютерного моделирования были вычислены характеристики электростатической системы а также и масс-спектрометра в целом. При этом было получено следующее значение преломляющего угла призмы $j = \gamma_e = 12,47^\circ$. Остальные рассчитанные параметры масс-спектрометра приведены в таблице 1. Рассматривались варианты масс-спектрометра с косым входом и выходом пучка в магнитном поле. Углы входа и выхода σ_1 и σ_2 удовлетворяют условию $\sigma_1 = \sigma_2 = \sigma$ [3]. Для этих вариантов масс-спектрометра подбирались параметры электростатической системы и секторного магнита, при которых выполняется фокусировка по направлению и по энергии.

σ	10°	5°	0°	-15°	-15°
V_2 / V_0	1,688	1,644	1,5	1,696	3,276
Γ_{e}	2,085	1,981	1,632	2,103	5,184
D'_e	0,493	0,492	0,488	0,493	0,521
${\gamma}_{H}$	25°	37 [°]	51 [°]	86 [°]	58 [°]
$arPsi_{H}$	45 [°]	47 [°]	51°	56°	28 [°]
L	0,283	0,283	0,268	0,283	1,059
l_d	5,994	2,512	1,329	0,621	1,699
D_m	2,420	1,112	0,701	0,441	0,430
Г	-1,171	-2,549	-4,040	-6,428	-6,585
M	-0,853	-0,393	-0,247	-0,155	-0,151
S _k	8,813	5,369	4,136	3,636	4,976

Таблица 1 – Рассчитанные параметры ахроматических масс-спектрометров

В таблице 1 используются следующие обозначения: Γ_e – угловое увеличение электростатической системы, D'_e – угловая дисперсия электростатической системы, γ_H – секторный угол магнита, Φ_H – угол поворота в магните, L – расстояние от трансаксиальной линзы до магнита, l_d – длина выходного плеча секторного магнита, D_m – линейная дисперсия по массе, Γ – угловое увеличение масс-спектрометра, M – линейное увеличение масс-спектрометра, s_k – длина осевой ионной траектории от щели источника ионов до щели детектора масс-спектрометра.

Все рассчитанные масс-спектрометры имеют одинаковое значение параметра $K = \frac{D_m}{|M|}$, равное 2,836, поэтому эффективность рассмотренных вариантов целесообразно определять по величине s_k . Из данных таблицы 1 видно, что параметр s_k , определяющий габариты масс-спектрометра, увеличивается при положительных σ и уменьшается при отрицательных σ .

В таблице 1 приведены два варианта масс-спектрометра с одинаковым значением $\sigma = -15^{\circ}$, отличающиеся отношением потенциалов $\frac{V_2}{V_0}$. При увеличении отношения $\frac{V_2}{V_0}$

ахроматизация достигается при меньших размерах магнита, определяемых углом γ_H , правда при этом несколько растут габариты прибора.

Согласно расчетам рассмотренный масс спектрометр обладает достаточно высокими характеристиками и лишь немного уступает по разрешению одному из лучших современных секторных масс-спектрометров [4]. Однако предложенный нами масс-спектрометр имеет по сравнению с [4] более простую конструкцию и меньшие габариты. Дальнейшее совершенствование этого масс-спектрометра затруднено, так как небольшая дисперсия по энергии электростатической системы не позволяет получить ахроматизацию при больших секторных углах магнита γ_H , что ограничивает дисперсию по массе D_m , а следовательно и разрешение прибора.

Для преодоления этого недостатка в схему масс-спектрометра вводится дополнительный электростатический выходной каскад, тоже состоящий из иммерсионной трехэлектродной призмы и трансаксиальной линзы. Этот выходной каскад трансформирует изображение щели источника ионов на щель приемника ионов. Пучок ионов поступает в него после того, как в секторном магните сформировано промежуточное изображение щели источника ионов. В этом промежуточном фокусе осуществляется лишь частичная фокусировка по энергии. Полная пространственная и энергетическая фокусировка пучка ионов достигается только после прохождения выходного каскада.

В промежуточном фокусе при отсутствии ахроматичности может быть получено очень высокое значение параметра «качество» за счет большого углового увеличения и следовательно малого линейного увеличения промежуточного изображения. После прохождения выходного каскада «качество» несколько уменьшится, но зато может быть достигнуто высокое качество фокусировки по энергии.

Так как в предлагаемом масс-спектрометре имеется промежуточный действительный фокус, то для достижения ахроматичности выходной каскад должен поворачивать пучок в ту же сторону, что и секторный магнит. Принципиальная схема этого масс-спектрометра изображена на рис. 2.

Рис. 2. Схематическое изображение масс-спектрометра

Выходящий из точки *А* щели ионного источника 1 расходящийся пучок ионов сначала ускоряется, преломляясь на границе электродов 2, 3, а потом замедляется сначала на границе электродов 3, 4 и затем на границе электродов 4, 5 рассеивающей иммерсионной линзы до потенциала входного электрода 2. При этом образуется мнимое изображение щели

источника A'. После прохождения электростатической системы ионный пучок попадает в секторное однородное магнитное поле 6, которое формирует промежуточное изображение щели источника A''. После этого пучок попадает в электростатический выходной каскад, где он сначала ускоряется на границе электродов 7, 8, а затем замедляется на границе электродов 8, 9 и 9, 10 до потенциала на входе в масс-спектрометр. Собирающая трансаксиальная линза фокусирует пучок в щель 11 приемника ионов.

Предложенная схема должна обладать преимуществами по сравнению с массспектрометром [4], так как выходной электростатический каскад на основе электростатической призмы, увеличивая дисперсию по энергии, позволяет к тому же использовать широкие пучки ионов, не вызывая дополнительных аберраций.

Литература

1. Baisanov O.A, Doskeev G.A, Spivak-Lavrov I.F. Calculation of Mass-Spectrometer with Sector Magnet, Electrostatic Prism and Transaxial Lens // 7-th Int. Conf. on Charged Particle Optics, Trinity College, Cambridge, England. Abstracts 24-28 July 2006. – P. 108-109.

2. Байсанов О.А., Доскеев Г.А., Спивак-Лавров И.Ф. Математическое моделирование траекторий заряженных частиц в электрических и магнитных полях со средней плоскостью // Материалы III Международной научно-методической конференции «Математическое моделирование и информационные технологии в образовании и науке», КазНПУ. – Алматы, 2005. – С. 39-42.

3. Кельман В.М., Родникова И. В., Секунова Л.М. Статические масс-спектрометры. – Алма-Ата: Наука, 1985. – 263 с.

4. Ishihara M., Kammei Y., Matsuda H. A high-perfomance mass spectrometer for very small size // Nucl. Instr. & Meth. In Phys. Res. – 1995. – Vol. 363, Nos. 1, 2. – P.440-444.

АХРОМАТТЫ СТАТИКАЛЫҚ МАСС-СПЕКТРОМЕТРЛЕРДІҢ ЖАҢА СХЕМАЛАРЫ

О.А. Байсанов, Г.А Доскеев, И.Ф. Спивак-Лавров

Статикалық секторлық масс-спектрометрлердің жаңа схемалары есептелген және ұсынылған, оның ішінде ахроматизация алу үшін электростатикалық призма және трансаксиалдық линзадан кұрастырылған бұрын қолданылмаған электростатикалық жүйелер пайдалынады.

NEW SCHEMES AHROMATIC STATIC MASS-SPECTROMETERS

O.A. Baisanov, G.A. Doskeyev, I.F. Spivak-Lavrov

Here offered and calculated new schemes of the sector mass-spectrometers, in which for focusing on energy are used unusual electrostatic systems, consisting of electrostatic prism and transaxial of the lens.