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MIXED STAR-PLUS-WORMHOLE SYSTEMS WITH
A COMPLEX SCALAR FIELD

We study compact mixed configurations with a nontrivial wormholelike spacetime topology sup-
ported by a complex ghost scalar field with a quartic self-interaction and a polytropic fluid. The latter
is modeled by a relativistic barotropic equation of state that can approximately describe more or less
realistic matter. For such systems, we find regular asymptotically flat equilibrium solutions describing
localized configurations in which the fluid is concentrated in a finite-size region. The solutions obtained
describe double-throat wormholes which are located outside the fluid (one can say that the fluid is hid-
den inside the region between the throats). Also, we consider the dependence of the total mass of the
system on the central density of the fluid and demonstrate the existence of critical values of the central
density at which the mass diverges. In this case all regular solutions possessing finite masses lie in the
region between these critical values, and this region also contains a discontinuity in magnitudes of the
central density where only physically unacceptable oscillating solutions do exist. Is shown that for some
values of the central density of the fluid there can exist solutions describing systems whose fluid density
and pressure maxima lie not at the center. This results in the fact that such systems possess two equators
(local maxima of the metric function) resided symmetrically with respect to the center.

Key words: wormholes, nontrivial topology, complex scalar fields, polytropic fluid.
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JKYAABI3 )K9He KOpTbILLKaH iHi 6ap
KeLleHA| CKaAsIpAbl @picTi apaAac xyieaep

TepTTik MNOTEHUMAAABIK, 3HEPrus >KoHe TMOAUTPOMUSIAbIK, CYMbIKTbIKMEH KeLIeHAI CKAASpPAbI
epicrneH KypblAFaH, OeiTapanTblK, KOPTbIWKAH iHi TOPI3AI TMNTEri KEHiCTiK-yaKbITTbIK, TOMNOAOIMSIMEH
bIKLLIAM apaAac KOH(UrypaumsAapAbl 3epTTenmis. byA KoHpUrypaums peastuBuCTiK 6apoTPONUSAbIK,
TEHAEYMEH MOAEAAEHEA], OA HAKTbIAQHFAH 3aTThbl CUMATTAM aAaAbl. MyHAQ Xyieaep yuiiH 6i3 TypakThi
ACMMITOTMKAABIK, Ka3blK, Terne-TEeHAIK LieiMAepiH TabaMbl3 XoeHe OAap iliHapa CyMbIKTbIKKA TOAbI
eki eHelli 6ap KOPTbIWKAH IHAEPAI CUMATTAMTbIHBbIH KepceTemMi3. AAbIHFAH LIEWIMAED CYMbIKThIKTbIH
CbIPTbIHAQ OpPHAAACKaH eki eHel 6ap KepTbIWKAH iHiH cUNaTTarnAbl (CYMbIKTbIK, ©HEL apacblHAAFbI
arMakTa >KacblpblAFaH Aen aiTa arambl3). COHbIMEH KaTap >KYMEHiH, »aAmbl MacCaCbIHbIH, CYMbIKTbIKTbIH,
OPTaAbIK, ThIFbI3AbIFbIHA TOYEAAIAITIH KapacTblpambl3 XK8HEe Macca TapaAaTblH OPTAAbIK, TbIFbI3ABIKTbIH,
KPUTMKAABIK MOHAEPIHIH 6ap ekeHAIriH kepceTemis. by xaraanaa CoHFbl Maccarapbl 6ap 6apAbIK TYPAKTbl
LwewimMaAep anMakTa KPUTUKAAbIK, MOHAEP apacbiHAQ OPHAAACaAbl >kaHe OYA anmakTa Tek (OM3MKAADIK,
SKOA BepiAMenTiH TepbeAMeni LweliMaep 6OAATbIH OPTAAbIK, ThIFbI3ABIKTbIH MOHAEPIHAE TYPaKChI3AbIK,
6ap. CyMbIKTbIH OPTAAbIK, ThIFbI3AbIFbIHBIH KENOip MOHAEPI YLLiH CYMbIKTbIKTbIH, ThIFbI3AbIFbI MEH OHbIH
KbICbIMbl MAaKCMMYMbl KOH(UIYpaUMSHbIH, OPTacbiHAQ GOAMAMTBIH >KYMEAepAI CUMaTTalTbIH LWeLliMAEp
GOAYbI MyMKiH EKEHATT KepCeTIAreH. byA MyHAQl XyeAepAe OpPTaAbIKTa CUMMETPUSIAbI OPHAAACKaH €Ki
9KBATOPAbIH, (METPUKAABIK, (DYHKUMSIHBIH, XXEPTIAIKTI MaKCUMYMbI) GOAYbIHA SKEAEA].

TyiiiH ce3aep: KoepTbIKaH iHi, TPUBMAAABI €MeC TOMOAOIMs, KYPAEAI CKaAspAbl epicTep,
NOAMTPONTbI CYMbIKTHIK,
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CMmelllaHHble CUCTEMbI 3Be€3A4 NAKOC KpOTOBasi HOpa
C KOMMNAEKCHbIM CKAaASIDHbIM MOAEM

Mbi NCCAepAyeM KOMMaKTHble CMellaHHble KOHCbl/lrypaLll/lVl C HeTplABM&/\bHOVI TOMoAOruen
NMPOCTPAaHCTBa-BpEMEHN TUIMa KpOTOBOVI HOpPBbI, O6paSOBaHHble KOMIAEKCHbIM CKaASdpPHbIM TIOAEM C
quBeleHHOVI MOTEHUMAAbHOM 3Heprmel7| n l'IOAVITpOI'IHOﬂ XKMAKOCTbIO. [locAaeaHsIq MOAEANPYETCA
PEAATUBNCTCKMM 6apOTpOI'IHblM YpPaBHEHUEM COCTOAHUSA, KOTOPOE MOXeT ﬂpl/l6/\VI)KeHHO OnuncCbiBaTb
6oAee UAM  MeHee peaAncTMyHoe BelwecTBO. A/\Sl TakKnX CUCTEM Mbl HaXOAUM pPeEryAdpHbie
ACUMINTOTUYHECKN NMAOCKME paBHOBECHbIE pelleHnd, onmcbiBalolme AOKaAM30BaHHbIe KOHCbVIryan,VIVI,
B KOTOpPbIX >XMAKOCTb CKOHUEHTPMpPOBaHa B 06AaCTM C KOHEYHbIMU pa3mMepamn. nO/\yLIeHHble
peweHnsa onmcbiBalOT KPOTOBbIE HOPbI C ABYMSA TOPAOBMHAMM, KOTOPbIE PACMNOAOXKEHDbI BHE )KMAKOCTU
(MO>XHO CKa3aTb, YTO XXMAKOCTb CKpbITa B obAactn Me>XXAY l'Op/\OBl/IHaMVI). Tak>ke Mbl paccMaTprBaem
3aBMCMMOCTb MOAHOM MacCCbl CUCTEMbl OT LI,eHTpa/\bHOVI NMAOTHOCTN KMAKOCTN N AEMOHCTpUpyemM
CyweCcTBOBaHME KPUTUYECKNX 3HAYEeHUM Ll,eHTpa/\bHOl;l NMAOTHOCTH, TIPN KOTOPbIX MacCCa pPacCXxoAUTCA.
ﬂpm 3TOM BCe peryAdpHble peweHnda ¢ KOHEYHbIMM MaCCaMM AeXXaT B obAactm MeXAy KpUTnyeCKnMmmn
3HAYeHNIMN, "N 3Ta 00AaCTb Takxke COAEPXKAUT pa3pbiB B 3HAYEHUAX LLEHTpaAbHOVI NMAOTHOCTH, B
KOTOPOM MMEIOTCA TOAbKO Cbl/IBl/l‘-IeCKl/l HErNpremMAemble OCUMAAMPYIOLLME pelleHns. r]OKa3aHO, 4yToO
AAS HEKOTOPbIX 3HAYEeHUM LLeHTpa/\bHOVI NMAOTHOCTUN J>KMAKOCTM MOryT CylweCcTBOBaTb pelleHus,
onumcbiBarowne CUCTEMbI, B KOTOPbIX MAKCUMYMbl MAOTHOCTU >XXMAKOCTU U ee AaBAEHUSA AeXaT He B
LUeHTpe KOHCbl/IpraLll/IVI. o710 NMPUBOAUT K TOMY, YTO TakKMne CUCTEeMbl 06/\aAaIOT ABYM4 3KBaTOpaMn
(AOKaAbHbIMM MaKCMMyMaMm METpM‘-IeCKOVI CII)yHKLLl/IVI), PaCNnoOAO>XXeHHbIMN CMMMETPUYHO OTHOCUTEABHO

LeHTpa.

KAroueBble caoBa: KPOTOBblE€ HOPbI, HETPMBMAAbHASA TOIMOAOIMA, KOMIAEKCHbIE CKaAdpPHbIE TOAS,

MOAUTPONMHAasA )XMAKOCTb.

Introduction

At the present time various scalar fields play
an important role in constructing models of the
early and present Universe. In particular, they may
provide both the inflationary stage in the very early
Universe and its current accelerated expansion [1].
Their role on small spatial scales comparable to sizes
of galaxies and their clusters, as well as on scales
of stars, can also be significant. Namely, one can
imagine a configuration consisting of a scalar field
confined by its own gravitational field — a boson star
[2, 3]. Due to the quantum Heisenberg uncertainty
principle, there is a pressure inside such a star
preventing it from gravitational collapse. In this
sense such a scalar star is a sort of quantum-classical
object whose existence is ensured simultaneously by
quantum and classical properties of the scalar field.
The studies performed in the literature indicate that
masses of such objects can vary from atomic ones
(“gravitational atom”) to masses of the order of the
Chandrasekhar mass, and even much larger. It is not
impossible that there can be many such objects in the
Universe. Then, if their electromagnetic radiation is

weak, they can serve as candidates for the role of the
missing dark matter.

In constructing models of boson stars, two types
of scalar fields are used — real and complex ones [2,
3]. In doing so, usually a canonical field is employed
with a fixed sign in front of the kinetic term of
the scalar field Lagrangian density. If one takes
the other sign, this corresponds to so-called ghost
scalar fields. The possible existence of such fields
in nature is indirectly supported by the observed
accelerated expansion of the present Universe (see,
e.g., Ref. [4]). As the canonical scalar fields, ghost
fields enable one to get localized static nonsingular
solutions both with a trivial spacetime topology [5]
and with a nontrivial one — the so-called wormholes
[6-10]. If ordinary matter or radiation can fill such
wormbholes, they are called traversable wormholes
(for a general overview on the subject, see the books
[11, 12]). As matter threading the wormhole, one
can use, for example, a relativistic fluid of the type
containing in neutron stars. Then the mixed neutron-
star-plus-wormhole configurations will possess
properties of wormholes and of ordinary stars [13-
19].
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Mixed star-plus-wormhole systems with a complex scalar field

The goal of the present paper is to study a
wormhole supported by a complex ghost scalar field
and filled with ordinary matter. To do this, we will
construct localized regular solutions with a
nontrivial wormholelike topology. In two limiting
cases, such a system becomes the system consisting
of a wormhole only (without ordinary matter) [20]
or the mixed system supported by a massless real
scalar field [16]. Our purpose will be to find out

what are the differences between the configurations
considered here and the systems of Refs. [16, 20].

General equations

We consider a model of a mixed gravitating
configuration consisting of a complex ghost scalar
field and polytropic fluid. The corresponding action
for such a system can be taken in the form

§s=[ d'x /=g {- SR +1[-g" 3,9 3, — V(®D)]} + 55, )

16mG

where @ is a complex scalar field with the potential
V(|®|?) and Sy denotes the action of the fluid.
Hereafter the Greek indices run over p,v...=
0,1,2,3.

By varying (1) with respect to the metric, one
can obtain the gravitational equations whose
right-hand side contains the energy-momentum
tensor

1

TS =—-=
v 2

g7 (8,®° 0, + 0,P 9, D) +
1 Ui Ao *
+§5v (g7 8;,0* 0,2 +V) +

+(e + putu, — 8)p,

where ¢ is the energy density of the fluid and p is
its pressure. In turn, varying (1) with respect to the
scalar field, one obtains the equation for @,

0 0P dv

1
— 7 /S ——| = ®.
—g ax#[ 99" 5 = qrop

Our goal here is to study equilibrium
wormhole-plus-fluid solutions. To this end, it is
convenient to take the spherically symmetric metric
in polar Gaussian coordinates

ds? = eV (dx%)? — dr? — R?(d®? + sin?0 d¢?),

where v and R are functions of the radial
coordinate r only.

We will study localized solutions with a
wormholelike topology, which is ensured by the
presence of the complex ghost scalar field in the
action (1). Then, in order to have no time
dependence in the gravitational equations, we use
for the scalar field the harmonic ansatz

O(x0, 1) = p(r)eiwx°,

which ensures that the spacetime of the
configuration under consideration remains static. As
a result, we have the following set of Einstein-scalar
equations:

PR ()= = @ r e ) @
)t = [ e e g 4] @
e R At S R ST
¢”+Gv’+2%’)¢'+(wze‘v+d%z)¢ =0, ®)

where the prime denotes differentiation with respect
to 7. Depending on the specific form of the potential

V and the boundary conditions, it is possible to
obtain localized equilibrium solutions by solving
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these equations numerically. Notice here that in the
absence of the fluid we return to the system of Ref.
[20]. In turn, when w = V = 0, we have the system
of Ref. [16].

In order to obtain regular asymptotically flat
solutions with a nontrivial topology, we take the
potential

m?c?

- _ 2,12 4
V=0 4ol (6)

where m and A are free parameters of the scalar
field.

Next, the above equations have to be
supplemented by an equation of state for the fluid.
We consider here the simplest case of a barotropic
equation of state where the pressure is a function of
the mass density p. Namely, we take the following
polytropic equation of state that can approximately
describe more or less realistic matter:

p =Kp'*/" e = pc? +np, (7)
where the constant K = kcz(nl(fh)mb)l'y , the
polytropic index n=1/(y — 1), and p =n;m,
denotes the rest-mass density of the fluid. Here n,,
is the baryon number density, nl(fh) is a
characteristic value of n;,, m,; is the baryon mass,
and k and y are parameters whose values depend
on the properties of the matter. For the sake of
simplicity, we take here only one set of parameters
m, = 1.66 x 10724 g, n{™ = 0.1 fm™3, k = 0.1,
and y = 2 [21], and employ them in the numerical
calculations of Sec. 3.

Then, introducing the new variable 8,

p=pO"

where p. is the central density of the fluid, we can
rewrite the pressure and the energy density from Eq.
(7) as

1+1/n
/ 9n+1’€ — (

p=Kp, pec? + nKng/nB) on.

!

X

XII 1X!

A
7_{_5?1/ +%vu +iV'2 = Bgh"t! + (prz —Qze_"q)z + (pz _E(p4'

] + % =B(1+0onB)o" — ¢'? — 02e Vp? — p? + %(p”‘,

x" (x' 1 _ A
——(;+ v’) +5=—Bof™! + ¢ + Qe p? — 9? + 29",

Making use of these expressions and of the
equation that follows from the yu = r component of
the law of conservation of energy and momentum,
T/r;v =0,

dp

_ 1(+ )dv
dr 2\ pdr'

we have for the internal region with 8 # 0,

20(n + 1)% =—[l+om+D0T, (3

where o = Kp/™/c? = p./(p.c?) is a dimen-

sionless relativity parameter, related to the central
pressure p. of the fluid. Integrating this equation,
we get the metric function eV in terms of 6,

1+o(n+1)7°
eV =eVc | ———|,
1+o(n+1)6
and eV¢ is the value of eV at the center where 6 =
1. The integration constant v, is fixed by the
requirement of the asymptotic flatness of the
spacetime, i.e., ¢V — 1 at infinity.

Numerical solutions

Let us now turn to the numerical calculations.
For this purpose, it is convenient to rewrite the
above equations in terms of the dimensionless
variables

r

R
X = —,X = A_'Q = Aca),A =
c c
ac 7 VaTG
T amem2 P T T2 ¢, ©)

where A, = A/mc is the constant having the
dimensions of length (since we consider a classical
theory, A, need not be associated with the Compton
length). Then, using the potential (6), one can
rewrite Egs. (2)-(5) in the form

(10)

(11

(12)

13



Mixed star-plus-wormhole systems with a complex scalar field

’ 1y x' -
g0'+(5v +27)¢’+(Qze V—1+ApHep =0,

where B = 8mGA%p,/c?. Since, due to the Bianchi
identities, not all of these equations are independent,
one may use any three of them in calculations. Here,
we will solve Egs. (8), (10), (12), and (13), treating
the first-order equation (11) as a constraint equation
to check the accuracy of the computations.

When solving the above equations, we use the
symmetric boundary conditions imposed at the
center x = 0,

X(0) = Xc,v(0) = v, 9(0) = ¢, 0(0) = 1
(14)

(all first-order derivatives are supposed to be zero at
the center). The constraint equation (11) then yields

1

X, =
\/wg(ﬂze“’f—1+(A/2)<p%)—BG

(15)

Using this expression and expanding the
function X in the vicinity of the center as X =~
X, +1/2 X,x?, one can find from Eq. (10) the
value of the second derivative of X at the center

X, =202 V@2 = B[1 + o(n+ D]} (16)

Thus we have three parameters — ¢, V., and Q,
one of which can be chosen arbitrarily. For instance,
as in the case of boson stars [22], as such a parameter,
one can take ¢.. Then, the other two parameters
should be chosen in such a way as to ensure
asymptotic flatness of the spacetime, when ¢, @',
and v —» 0 and X — x. In this sense, we will deal
with an eigenvalue problem for the parameters v,
and ().

It is also useful to write out the asymptotic
behavior of the solutions:

2C, C,
eV->1-——X->xX ->1-——
x x

qo—>C1exp(—\/1—Q2 x)x[g for0 < Q<

< 1,9 - (3

(Bl forg =1, (17)
xa

where C;, C,, and C; are integration constants and
B = —1+ (C,02?/v1 — Q2. Note that the integration

14

(13)

constant C, plays the role of the Arnowitt-Deser-
Misner (ADM) mass of the wormhole-plus-fluid
configurations under consideration.

We solve the set of equations (8) and (10)-(13)
numerically, using the boundary conditions (14) and
(15) and varying the value of the boson frequency ()
in the interval 0 < Q <1 [the lower limit Q = 0
corresponds to the case of real scalar fields and the
upper limit is the necessary condition to ensure a
nonoscillating asymptotic behavior of the scalar
field; see Eq. (17)]. In doing so, the systems under
consideration may be subdivided into two regions:
(i) the internal one, where both the fluid and the
scalar field are present; (ii) the external one, where
only the scalar field is present. Correspondingly, the
solutions in the external region can be obtained from
Egs. (10)-(13), where the function 6 is set to be
zero. The internal solutions should be matched with
the external ones at the edge of the fluid, x = x;.
This is done by equating the corresponding values
of the functions ¢, X, v and their derivatives. The
boundary of the fluid x;, is defined by the condition
p(xp) = 0. In turn, the integration constant v, can
be determined from the
asymptotic  solutions, proceeding from the
requirement that the external solutions must be
asymptotically flat.

In the left panels of figure 1, we show a set of
typical solutions for the scalar field function ¢, the
fluid function 6, and the metric function v. The
value of the boson frequency (1 = 1 represents the
limiting value of the physically acceptable interval.
Note that for the chosen value ¢, = 0.5 another
limiting case = 0 is undistinguishable since
regular solutions do exist not for all B but are
restricted by some critical values of B = B (see
below). An interesting feature of the system is the
possibility of the presence of the maximum of the
fluid density shifted with respect to the center of the
configuration; see figure 1(a).

In the right panels of figure 1, we exhibit the
solutions for the metric function X. Its behavior
strongly depends on the sign of the expansion
coefficient X, from (16). Namely, for the given
¢ = 0.5, the configurations always possess a
double throat when the minimum value Xy, =
min{X(x)} is on either side of the center of the
configuration. In this case there are two
possibilities: (i) if X, < 0, there is one equator (a
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local maximum of X); see figure 1(d); (ii) if X, >  a distinctive feature of the mixed system with the
0, there may be already two equators located complex scalar field; in the case of the use of a real
symmetrically with respect to the center; see figure  scalar field, there are only systems possessing one
1(b). The existence of the double-equator systems is  equator [16].

17.5 A=l

17.0

16.5

] 16.0

. 15.5

“

Figure 1 — Left panels: the scalar field function ¢ (dotted lines), the fluid function 8 (solid lines),
and the metric function v (dashed lines). Right panels: the graphs of the metric function X,
where the positions of the throats Xy, = min{X(x)} are shown by the bold dots. The shaded segments
of the curves represent the regions where the fluid is present. The inset shows the asymptotic behavior when X — x.
For all plots, the blue curves correspond to the configurations with the limiting value Q0 = 1,
the red curves are for the configurations with Q = 0.058 [Bit1: (a) and (b)] and with Q = 0.013 [Bit2: (c) and (d)].
The central value of the scalar field is taken to be ¢, = 0.5. In view of the symmetry x — —x, only
the solutions for positive x are shown. The numbers near the curves are the values
of the corresponding scale factor introduced for convenience of representation.
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Figure 2 — The total mass of the configuration M as a function of the parameter B.
The thin vertical lines correspond to B = B for which the mass of the configurations diverges
(the corresponding solutions describing systems near these points are shown by red lines in figure 1
with Q = 0.058 for B = Bjt; and Q = 0.013 for B = Bjt»). In the shaded region Q > 1,
and the solutions for the scalar field are oscillating. The inset shows the region where the masses are close to zero.

For all cases considered here, the throats are  enclosed by a sphere with circumferential radius
located beyond the fluid, i.e., the fluid is completely =~ R., which corresponds to the center of the system,
hidden in the region between the throats. For other  and another sphere having the radius R > R, can
values of ¢, one may expect both the existence of  be defined as follows:
single-throat configurations and of systems with
two throats filled with a fluid, as it takes place for c? T (" ona
the system of Ref. [16] supported by a real scalar M(r) = ERC + 2 f To R“dR.
field. But this issue requires special studies. Re

Let us now consider the ADM mass of the above
systems. For a spherically symmetric configuration,
the Misner-Sharp [23] mass M(r) inside the

Taking the boundary to (spacelike) infinity, the
Misner-Sharp mass gives the ADM mass. In the
dimensionless variables (9), we then have

volume
M(x 1 x A dX
M(x) = (2) =—|X,+ f [B(l +0on0)o™ — ¢'? — Q%2e Vp? — p? + —go“] X?— dx’],
Mp 2 0 2 dx
m
where Mp, is the Planck mass. equality of the denominator to zero; as a result,

The results of the calculations of the mass are X, — oo. For the complex scalar fields considered
presented in figure 2. It is interesting to compare  in the present paper, we have not one but two
the results obtained with those found for critical values Bty and Beritz, near which the
wormholes supported by a real massless scalar and  total mass of the configurations increases
threaded by the same fluid [16]. Depending on the  (modulus) rapidly and eventually diverges (see
value of the parameter B, masses of those figure 2). In this case physically interesting
configurations can vary from O (for B = 0) up to  solutions exist only for B > B.j1 and B <
some finite positive magnitude for the critical  Bgjtz, up/down to the values of B for which the
value of B = Bj;. The existence of the latter  boson frequency Q — 1 (see the inset of figure 2).
follows from Eq. (15) and corresponds to the  Correspondingly, there is a discontinuity in
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possible values of B (the shaded region in figure 2
where Q >1 ), where only asymptotically
oscillating solutions for the scalar field do exist [cf.

Eq. (17)].
Conclusion

We have considered mixed systems consisting of
a complex ghost scalar field with a quartic potential
and ordinary polytropic fluid. This study extends the
previous researches of Refs. [16, 20] where the
systems with a real massless scalar field plus a
polytropic fluid [16] and the configurations supported
by a complex ghost scalar field without ordinary
matter [20] have been considered. We have shown that
there exist static regular asymptotically flat solutions
describing localized configurations in which the fluid
is concentrated in a finite-size region. We have
demonstrated that for the chosen central value of the
scalar field (i) there exist only double-throat
configurations; and (ii) the wormhole throats are
located outside the fluid (or one can say that the fluid
is hidden inside the region between the throats).
Unlike the configurations of Ref. [16], the systems
considered here possess the following new properties:

(1) Instead of one critical value B, there are
two different critical values Bpjt; and Bz for

which the total mass diverges. All regular solutions
possessing finite masses lie in the region between
these critical B’s, and this region also contains a
discontinuity in B (shown by the shaded region in
figure 2) where the boson frequency Q > 1; this
corresponds to the presence of oscillations of the
scalar field, that is physically unacceptable.

(2) For some values of B, there can exist
solutions describing systems whose fluid density
and pressure maxima lie not at the center [see figure
1(a)]. This results in the fact that such systems
possess two equators resided symmetrically with
respect to the center; see figure 1(b).

The solutions obtained cover only a restricted
set of the model parameters. In further
investigations, we plan to extend these calculations.
Moreover, it will be interesting to address their
rotating generalizations [24].
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