ВЛИЯНИЕ НАЧАЛЬНОЙ КОНЦЕНТРАЦИИ ТОПЛИВА НА ГОРЕНИЕ ЛАМИНАРНЫХ И ТУРБУЛЕНТНЫХ СТРУЙ

А.С. Аскарова, С.А. Болегенова

Казахский национальный университет им. аль-Фараби, г.Алматы

Получено численное решение задачи о горении ламинарной и турбулентной затопленных струй метана в неподвижной окружающей среде.

Рассматривается задача о ламинарном диффузионном факеле, образующемся при горении струи метана в неподвижной окружающей среде.

В реальных условиях реакции горения метана протекают частично по цепному механизму, частично – в тепловом режиме, когда непосредственно реагируют молекулы топлива и окислителя. Поскольку в диффузионном факеле скорость горения лимитируется скоростью смешения топлива и окислителя, то кинетикой химических реакций можно пренебречь.

Обобщенную реакцию горения метана можно записать следующим уравнением:

$$CH_4 + 2O_2 + N_2 = CO_2 = 2H_2O + N_2 + Q$$
(1)

Здесь метан (CH₄) – топливо, кислород (O₂) – окислитель, углекислый газ (CO₂) и вода (H₂O) – продукты реакции, азот (N₂) – инертный разбавитель.

Необходимо учитывать наличие инертных разбавителей в реагирующей смеси. Таким образом, предполагается, что реагирующая смесь является пятикомпонентной при горении метана.

С учетом сделанных предположений и допущений, математически данная задача описывается следующими уравнениями.

уравнение неразрывности:

$$\frac{\partial(r\rho u)}{\partial x} + \frac{\partial(r\rho v)}{\partial r} = 0$$
⁽²⁾

уравнение движения:

$$\rho u \frac{\partial u}{\partial x} + \rho \upsilon \frac{\partial u}{\partial r} = -\frac{\partial p}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu_{eff} \frac{\partial u}{\partial r} \right) + \left(\rho - \rho^* \right) g_x \tag{3}$$

уравнение энергии:

$$\rho u \tilde{n}_{p} \frac{\partial T}{\partial x} + \rho v c_{p} \frac{\partial T}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda_{eff} \frac{\partial T}{\partial r} \right) + Q w_{1}$$
(4)

уравнения переноса концентраций компонент смеси:

$$\rho u \frac{\partial \tilde{n}_i}{\partial x} + \rho \upsilon \frac{\partial \tilde{n}_i}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(r D_{eff} \frac{\partial \tilde{n}_i}{\partial r} \right) \pm w_1, \ i = 1, 2, 3, 4, 5.$$
(5)

Здесь Q – тепловой эффект реакции, определенный на единицу массы топлива; i – номер компоненты смеси, w_i - скорости химических реакций, μ_{eff} , λ_{eff} , D_{eff} – соответственно эффективные коэффициенты вязкости, теплопроводности и диффузии:

$$\mu_{eff} = \mu + \mu_t, \ \lambda_{eff} = \lambda + \lambda_t, \ D_{eff} = D + D_t,$$

где μ , λ , D – динамическая вязкость, теплопроводность и коэффициент диффузии, а μ_t , λ_t , D_t – соответствующие турбулентные величины. При ламинарном течении μ_t , λ_t , D_t равны нулю. Обычно вместо λ используют коэффициент температуропроводности a, который имеет ту же размерность, что $v = \mu / \rho$ и D.

В уравнении (5) имеется два источниковых члена:

a) градиент давления $-\frac{\partial p}{\partial x}$, который отличен от нуля во внутренних течениях (камера

сгорания) и равен нулю во внешних течениях;

б) подъемная сила $(\rho - \rho^*)g_x$, возникающая вследствие разности плотностей. В соответствии с законом сохранения вещества справедливо следующее равенство:

$$\sum_{i=1}^{5} c_i = 1 \tag{6}$$

Граничные условия для этой системы уравнений задаются следующим образом:

При х=0 (на выходе из сопла) задаются начальные значения всех искомых функций:

$$0 < r < r_0$$
: $u = u_0$; $c_1 = c_{01}$; $\widetilde{c}_i = \sigma_i c_{01}$; $H_0 = c_p T_0 + Q c_{01}$

На оси струи задаются условия симметрии:

$$x \ge 0, r=0: \quad \frac{\partial u}{\partial r} = \frac{\partial H}{\partial r} = \frac{\partial c_1}{\partial r} = \frac{\partial \widetilde{c}_i}{\partial r} = 0$$

На свободной границе значения функций стремятся к их значениям в окружающей среде (покоящийся воздух):

$$x \ge 0, r \to \infty$$
: $u \to 0, \qquad H \to H_\infty = c_p T_\infty, c_1 \to 0, \quad \widetilde{c}_i \to c_{\infty i}$

Представленная в система уравнений является корректной для ламинарных течений, и незамкнутой – для турбулентных течений, т.к. при турбулентном режиме эффективные коэффициенты переноса μ_{eff} , a_{eff} , D_{eff} являются неизвестными функциями. Согласно аналогии Рейнольдса [1], можно использовать следующие соотношения:

$$\rho a_{eff} = \frac{\mu_{eff}}{Pr_{eff}}, \ \rho D_{eff} = \frac{\mu_{eff}}{Sc_{eff}}, \tag{7}$$

где Pr_{eff} , Sc_{eff} – эффективные числа Прандтля и Шмидта соответственно, которые задаются постоянными. Тогда в соответствии с (10) достаточно использовать модель турбулентности только для определения μ_{eff} .

В настоящей работе используется трехпараметрическая $k \cdot \varepsilon \cdot \overline{T'^2}$ модель турбулентности второго порядка с алгебраическими соотношениями для напряжений Рейнольдса, в которой связь пульсационных характеристик течения с осредненными параметрами содержится в дифференциальных уравнениях и алгебраических соотношениях.

В работе [1] рассматриваются уравнения баланса кинетической энергии турбулентности и ее диссипации, полученные из законов сохранения импульса и кинетической энергии. При таком подходе отпадает необходимость введения дополнительных гипотез относительно воздействия на турбулентные напряжения, как, например, в однопараметрических моделях первого порядка. Стандартная *k*-*є* модель турбулентности является достаточно простой и наиболее проверенной. Различными авторами [2 - 4 др.] был успешно рассчитан с помощью этой, ставшей стандартной, модели класс нереагирующих течений с естественной и вынужденной конвекций. k-*є* модель относится к двухпараметрическим моделям, в которых используются дифференциальные уравнения в частных производных для масштаба турбулентной составляющей скорости и линейного масштаба турбулентного течения. В k-*є* модели турбулентности в качестве такого линейного масштаба принимается скорость вязкой диссипации турбулентной энергии *є*.

По трехпараметрической k- ε - T'^2 модели величины k и ε находятся из транспортных уравнений, записанных в приближении стационарного двумерного пограничного слоя:

$$\rho u \frac{\partial k}{\partial x} + \rho \upsilon \frac{\partial k}{\partial r} = \frac{1}{r} \frac{\partial}{\partial y} \left(\frac{r \mu_t}{\sigma_k} \frac{\partial k}{\partial r} \right) + \mu_t \left(\frac{\partial u}{\partial r} \right)^2 - \rho \varepsilon + C_k f, \qquad (8)$$

$$\rho u \frac{\partial \varepsilon}{\partial x} + \rho \upsilon \frac{\partial \varepsilon}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r\mu_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial r} \right) + C_{\varepsilon 1} \frac{\varepsilon}{k} \mu_t \left(\frac{\partial u}{\partial r} \right)^2 - C_{\varepsilon 2} \rho \frac{\varepsilon^2}{k} + C_{\varepsilon 3} \frac{\varepsilon}{k} f$$
(9)

Здесь $f = \rho g \beta \sqrt{kT'^2}$, а средний квадрат пульсаций температуры определяется из соответствующего уравнения переноса [5]:

$$\rho u \frac{\partial \overline{T'^2}}{\partial x} + \rho \upsilon \frac{\partial \overline{T'^2}}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\mu_t}{\sigma_T} \frac{\partial \overline{T'^2}}{\partial r} \right) + c_{T_1} \mu_t \left(\frac{\partial T}{\partial r} \right)^2 - c_{T_2} \rho \varepsilon \frac{\overline{T'^2}}{k}$$
(10)

Эмпирические константы C_{μ} , C_k , $C_{\epsilon 1}$, $C_{\epsilon 2}$, $C_{\epsilon 3}$, C_{T1} , C_{T2} , σ_k , σ_ϵ , σ_T , использующиеся в этой модели, взяты из [6].

Было исследовано влияние начальной концентрации топлива на форму факела, скорость и температуру ламинарной и турбулентной реагирующих струй с одинаковыми исходными данными.

Получено численное решение задачи при трех значениях начальной концентрации топлива:

С_{fu0}=0,04 соответствует недостатку топлива;

С_{fu0}=0,058 соответствует стехиометрическому соотношению;

С_{fu0}=0,075 соответствует избытку топлива.

Результаты вычислительных экспериментов представлены на рисунках 1-2.

На рисунках 1-2 приведено изменение координаты фронта пламени в зависимости от продольной координаты х. Положение фронта пламени определялось по максимальной температуре. Из этих рисунков следует, что с увеличением начальной концентрации топлива факел становится шире и длиннее, как при ламинарном, так и при турбулентном течении. Недостаток топлива сильнее сказывается при ламинарном течении: при С_{fu0}=0,04 длина ламинарного факела почти такая же, как и турбулентного факела. Для других значений начальной концентрации длина ламинарного факела длиннее турбулентного более чем в два раза.

На рисунках 3-4 приведено изменение температуры во фронте пламени при различных начальных концентрациях топлива. Из этих рисунков следует, что температура горения и для ламинарного, и для турбулентного режимов горения остается примерно постоянной на всем протяжении факела, а увеличение начальной концентрации приводит к небольшому увеличению температуры горения. После окончания горения температура начинает довольно резко падать и вне зависимости от начальной концентрации топлива стремится к одному и тому же значению, это особенно хорошо видно на рисунке 4.

Рисунок 1 – Влияние начальной концентрации топлива на форму ламинарного факела

Рисунок 2 - Влияние начальной концентрации топлива на форму **турбулентного факега**

Рисунок 3 – Влияние начальной концентрации топлива на температуру горения в ламинарной струе

Рисунок 4 - Влияние начальной концентрации топлива на температуру горения в турбулентной струе

Литература

1 Аскарова А.С. Конвективный тепломассопереноса в капельных и нелинейновязких жидкостях. - Алматы, 2000. – 134 с.

2 Lemos M.J. Turbulence modeling in combined convection in mercury pipe flow // J.Heat and Mass Transf.-1985.-V.28. №6.- P.1067-1088.

3 Kitamura K., Hitata M. Turbulent heat and momentum transfer for electrically conclucting fluid flowing in two-dimensional channel under in a transfer magnetic field. 6-th. Int. Transfer Conf. Toronbo. 1978. V.3. - P.159-164.

4 Плам, Кеннеди. Применение k-є модели турбулентности к исследованию свободной конвекции от вертикальной изотермической поверхности. – Теплопередача. 1977. Т.99. - №1. - С.83-91.

5 Launder B.E, Spalding D.B. The numerical computation of turbulent flows Comp. Maths //Appl. Mech. Eng.: - 1974. - №3. P. 269-289.

6 Методы расчета турбулентных течений. /Пер. с англ.; Под ред. Колльмана В.- М.: Мир, 1984. – 464 с.

ТУРБУЛЕНТТІК ЖӘНЕ ЛАМИНАРЛЫҚ АҒЫСТЫҢ ЖАНУЫНА ОТЫННЫҢ БАСТАПҚЫ КОНЦЕНТРАЦИЯСЫНЫҢ ӘСЕРІ

Ә.С. Асқарова, С.А. Бөлегенова

Қозғалыссыз қоршаған ортадағы тереңдетіп енгізілген метан ағысынның турбуленттік және ламинарлық жануынынң сандық шешуі алынды.

INFLUENCE OF INITIAL CONCENTRATION OF FUEL ON BURNING OF LAMINAR AND TURBULENT JETS

A.S. Askarova, S.A. Bolegenova

The numerical decision of a problem on burning the laminar and turbulent flooded jets of metane in a motionless environment is received.