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The alternative method is suggested for taking into account the influence of each layer to explain the
mechanism of blocking electrons in a quantum dot . The inclusion of the multilayer structure of nanocrystal
leads to additional interactions between electrons in quantum dot and this potential is analytically derived.
When the relation of distance of electrons is sufficiently small, the additional potential becomes parabolic.
The dependence of frequency of the parabolic potential on the difference of dielectric permeability of layers
is determined. We assume that the spin-orbital interactions of electrons in quantum dot are defined in an
analogous way as a quarks in the nonrelativistic potential model of hadrons. Starting from this suggestion the
spin-orbital interactions of electrons in quantum dot are defined. The dependence of the coupling constant of
spin-orbital interactions on the image charge and effective size of quantum dot is studied.

1 Introduction

It is experimentally established that if a small number of atoms of germany is implanted on
the crystal surface of silicon or arsenide of gallium , after a while these atoms gather in some struc-
tures with the size of some tens nm. Structures of such a type are the so-called quantum dots [1].
They are local three-dimensional "traps™ for electron. At the present time, for application of
nanosystems such as quantum dots and a quantum wire [2] in modern semiconductor microelectron-
ics, the control of electron movement in such structures is main problem of nanotechnology. The
movement of electrons in nanostructures is controlled by acting on the electron electric charge with
the help of an external electric field or on the electron spin with the help of an external magnetic
field. When control of movement electrons in nanostructures is carried out due to spin-orbital inter-
action, such a low-size system is called “spintronics”. For the first time quantum dots have been
found [3] in the layered structure on the border of two connections GaAs and GaAlAs. Taking into
account the influence of each layer to explain the formation mechanism of blocking electrons in
quantum dots is one of the main tasks of modern investigation. However, the consideration of all
paired Coulomb interactions of electrons in quantum dots both between themselves and with atoms
in a layer, and the determination of the solution of the corresponding Schrodinger equation(SE)
from a mathematical point of view to find the solution many-body SE is possibility, but from a
practical point of view it is very difficult. Therefore, to find the solution to such a task approximate
methods are frequently applied. One of such methods is introduction of an effective parabolic con-
finement potential for blocking electrons in quantum dots (for details see [4]). However, on the dis-
tances from tens up to hundreds nm, only Coulomb forces operate between atoms and molecules.
The Coulomb potential differs from the parabolic confinement. Thus, our main purpose is to find
conditions when the Coulomb potential turn into parabolic potential. This condition gives a possi-
bility to explain the blocking mechanism of electrons in quantum dots. On the other hand, in
spintronics [5] the interaction between electrons is defined by spin-orbital interaction of electrons.
There arises a question under what conditions of interaction between electrons in nanostructures, in
particular, in quantum dots only spin-orbital interaction [6] is defined or under what conditions in-
tensity of spin-orbital interaction becomes dominating above Coulomb interaction between elec-
trons in quantum dots. The given work is devoted to studying these questions within the framework
of oscillator representation(OR) method [7].

To answer this question we proceed from the following assumptions: first, in the description
of the formation mechanism of quantum dots the essential role is played by quantum-mechanical
effects; second, it is necessary to take into account the influence of each layer. On dielectric proper-
ties each layer and each quantum dot is homogeneous. However the system as a whole is nonuni-
form and a condition of continuity of tangential derivative potentials should be satisfied. These as-
sumptions result in introducing an effective positive image charge is which associated with external
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factors. This reception is well known in electrostatics in studying of properties dielectrics [8]. Thus,
we assume that for explaining the blocking mechanism of electrons in quantum dots(QD) an essen-
tial role is played by the image charge that is caused by the difference of dielectric permeability
layers such as vacuum and semiconductor, or the semiconductor and dielectric (in detail see [9]).
Proceeding from these assumptions the effective potential of confinement is defined.

The work is organized as follows: the second section is devoted to definition of a kind of in-
teraction Hamiltonian with account for the properties of each layer and also some details of the
method of two-center adiabatic approximation are stated. In the third section, an energy internal
system is calculated in the framework of oscillator representation method. In the fourth section, the
behaviour of an additional potential of interaction is analysed. In the fifth section, the constant spin-
orbital interaction and its dependence on various parameters of structure which in turn depends on
concrete nanocrystal connections is analytically determined. In the sixth section, received basic re-
sults are discussed.

2 The interaction Hamiltonian with account the properties each layer

One of actual problems for the investigation main characteristics of nanocrystalical structure
IS necessary to take into account of the properties each layer. In particulary for the determination of
formation mechanism of two electron QD in which arise on border of two connections GaAs and
GaAlAs is essential to taking into account influence of each layers the structure. The influence of
each layers structure for the formation mechanism of two electron QD can be realized by the image
charge in which caused by difference dielectric permeability layers [8, 9]. The interactions between
electrons and image charge to be realized by the paired Coulomb interaction. Let us the permeabil-
ity of first and second layers noted &1 and e, respectively. Then the image charge defined as [9]:

Z, _MQ 2.1)
& T &,

where Q is the some positive constants connected with the electrostatic property of the layers. From
(2.1) we see that, if medium is uniform then the image charge equal to zero. On the other hand the
experimental results shown that the QD arise only on the border every of layers and not arised in the
uniform structure. The introductions of image charge give possibility explained the mechanism of
blocking electrons in QD and this effect also called dielectrical confainment of electrons in QD
[10]. Thus our problem lead to the investigations of formation mechanism three-body Coulomb sys-
tems.

Let us consider a three-body Coulomb system with particles of masses my, mz, ms and charges
—Z1e, —Z»e, Zze. The Hamiltonian for this system has the form (in the system units z=c =1)

i B 2,2,0° Z,2,8° Z,Z.¢

e (2.2)
"2 = m; |r A A AR A A
Introducing the Jacobi {%, y} and the center of mass Z coordinates
. m, m, I
n= X+ y+12
m+m,  m +m,+m,
. mo m N
r,=——"F—X+ 3 V+7Z (2.3)
m +m,  m +m,+m,
. m+m, _ .
=——"—"2—Yy+12
m, +m, +m;

we transform the Hamiltonian (2.2) to the form
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= _, Z,Z,6° Z,Z.€* Z,Z.6°
H:inJriPy% i L T . T (2.4)
2M 2u X XM /m, +y| [XM/m, -]
Here, we omit the kinetic energy term of center mass and use the following notations
Mo Mmoo (M my)m, 2.5)
m, +m, m, +m, +m,
It is convenient to introduce new dimensionless variables (R, F):
1 - y 1 P
X = R =
Me® JMpe? (2.6)
As a result, the SE reads as
—~ ~, L7 Z,Z.A Z,2.4 —~
g Lpe 2afs Lafst Lot U lgigy o @.7)
2" 2 F+cR |F-c,R 2

where we use the additional notations

1 m,m,m .
A=C +C,, C;j=— /# ji=12 (2.8)
m; \'m, +m, +m,

The energy of the three-body Coulomb system has the form
=——.12 .y (2.9)

and is determined by the dimensionless parameter U.
Our problem is to calculate the energy parameter U, and the wave function, from the SE rep-
resented in (2.7), in the framework of the OR method [7, 11].

2.1 The adiabatic approximation

In this section we present details of our approach to treat the SE for the three-body Coulomb
systems. The main ingredient is the adiabatic approximation for two center developed within the
OR, which allows to separate "fast" and "slow" dynamical variables. We remind that the adiabatic
approximation was applied by Born and Oppenheimer [12] and later by Born and Fock [13] to find
the solution of SE.

We assume that our system is axially symmetric. In the two-center adiabatic approximation
[14], the wave function of the three-body Coulomb system can be presented in the form

¥Y(R,F) = 7(R)-D(R,F) (2.10)
Here ®(R,F)
O(R,T) = j;_; @, (R; p,z) (2.11)

is the wave function of the intrinsic system, ¢ is the azimuthally angle and m is the magnetic quan-
tum number in the cylindrical system of coordinates. Substituting expressions (2.10), and (2.11) in-
to Eq.(2.7), we obtain after some simplifications

{ 1{ 2 10 m? az} 7,22
-= t————t— |-
op* pdp p° '] [p?+2cRz+cPR?

2

(2.12)
2,27

- — |0, (Rip.2)
\/p -2c,Rz +c,R
Here E((R) is the eigenvalue of the Hamiltonian of the intrinsic system. In Eq.(2.12) the variable R
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is considered as an external parameter.

The traditional approach to the eigenvalue problem consists of the use the elongated and ob-
late spheroidal coordinates [15], while the parameter R defines a focus distance and E.(R) is called
the term. In the two-center approximation the Coulomb three-body problem is separable in the
spheroidal coordinates and is analyzed with the aid of the two equations. These ordinary differential
equations are solvable in terms of series expansion (the detail see [15, 16]). In present paper we use
the OR to determine the E«(R) term.

2.2 The two center adiabatic approximation in the OR
Let us determine the E(r) energy spectrum of the intrinsic system in the framework OR. Car-
rying out substitution of variables

pP=2:pipy . z2=(p,—P,). (2.13)
and going over to the parabolic system of coordinates in Eq. (2.12), after relevant calculations, we
obtain

{_lp 0? G ‘) 0? L0 m® m
20| ap ap CopS o, Apy 4p,

ZJZ.ZSJ“'(IOI—'_pZ) — (2.14)
\/(/O1+,02) +2¢,R(p, + p,) +C.R

Z,ZA-(p,+ p,)

\/(pl +,02)2 —ZCZR(pl —p2)+022R2
For the determine the E.(r) energy spectrum of the intrinsic system, now we can apply the oscillator
representation method [11], to the SE (2.14).

Before defining the energy spectrum and the wave function of the SE (2.14) using the oscilla-
tor representation method [7], it is appropriate to note that this method is based on the ideas and
methods of the quantum theory of a scalar field. However, a considerable difference between quan-
tum field theory and quantum mechanics is that in the former case, the quantized fields in the form
of a set an infinite number of oscillatory nature in the quantum-field interaction. In quantum me-
chanics, the behavior of the eigenfunctions for most potentials differs from the Gaussian behavior
of the oscillator wave function. For this reason, while applying the methods and ideas of quantum
field theory for solving quantum-mechanical problems, the variables in the initial radial SE should
be changed so that the wave function would display the Gaussian behavior at large distances, and
the transformed equation in a space with a large dimension. It should be noted that a similar idea
first was discussed by Fock while solving the problem of the spectrum of the hydrogen atom with
the help of transformation to the four-dimensional momentum space [17].

Following Fock [18], we will assume that the asymptotic behavior of the wave function of the
intrinsic system is of the Coulomb type. In accordance with what has been said above, we change
the variables as follows (see for details [7]):

_(pl +p2)Er -

}&)m(r;pl’pz) =0

Pe=00 By =0, (6F,05) g o (2.15)
For the SE, we obtain from (2.14):
s o d-1 0 | 4Z,Z,(qf +4;)
2531 6a) 9 a4 | (o +a2)? +2c,R(a7 - q7) +CR

(2.16)
4Z,Z,A(q; +93)

J(@? +42)? - 2¢,R(q? - q2) + cZR?

—4E, (07 +0;) -

}‘Pm(qf.qi)—o
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where d is the dimension of the auxiliary space, which is equal to
d=2+ 2|m| (2.17)

As a result of the change of variables, we obtain a modified SE in the d-dimensional auxiliary space
RY. 1t follows from Egs. (2.16) and (2.17) that the magnetic quantum number m appears in the defi-
nition of the dimension d of the space. This approach makes it possible to determine all the charac-
teristics we are interested in, including the spectrum and the wave function, by solving the modified
SE for the ground state only in the d-dimensional auxiliary space RY. The wave function

¥ (97,95) of the ground state in R? is a function of variables g/ and g2 only. For this reason, we
identify the operator
0> d-1 0
+
aqk2 qk aQK
with the Laplacian Aq in the auxiliary space RY, which acts on the wave function of the ground
state, which is a function of radius gx only. Proceeding from the modified SE

—A,, k=12 (2.18)

gk

I_P{jm(ql’qZ):g(Er)\Pm(ql’qZ) (2.19)
in accordance with Eq.(2.16), we find that the energy spectrum in RY is equal to zero
g(E,)=0 (2.20)

We will consider this relation as the condition for determining the energy spectrum E, of the Hamil-
tonian (2.12). Following the oscillator representation method, we write the canonical variables in
terms of the creation and annihilation operators in the R space

k k+ k k+
q(k):ai+aj Coplo_ @B T8
: 2w, : 2 i

k=12 j=1..d, [a"a“]=5,,
where w is the oscillator frequency, which is yet unknown. Substituting expressions (2.21) into Eq.
(2.16) and ordering in the creation and annihilation operators, we obtain

(2.21)

H=H, +,(E,)+H, (2.22)
Here, Ho is the Hamiltonian of two uncoupled oscillators,
H, = o,(a;?-a%)+ 0, (a/?-a?) (2.23)
and eo(Er) is the ground-state energy in the zeroth approximation of the OR [7], which has the form
& (E,) =9a)1 +9w2 -2 E, -d -2 E,d — M w,w,)""? x
4 4 X @,
0 o d/2-1
Jjdpp2 { LZMB BB, .24
00 r (d /2) \/(181 +182) _2C2R(ﬂ1 _ﬂ2)+cl R

L ZZAB ) B B
JB.+ B,)° —2¢,R(B, - B,) + CIR®

The kind of interaction Hamiltonian H, given in [19]. The contribution of the interaction Hamilto-

}exp(_ o f — @, 5, )
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nian H is considered as a small perturbation [7]. In quantum field theory, after representing the ca-
nonical variables in terms of the creation and annihilation operators and representing the interaction
Hamiltonian in normal form, we find that the requirement of the absence of second-degree field op-
erators in the interaction Hamiltonian is essentially equivalent to renormalizations of the coupling
constant and the wave function [20]. Moreover, such a procedure makes it possible to take into ac-
count the main quantum contribution through the renormalization of mass and through the energy of
the vacuum. In other words, all quadratic forms are completely included in the Hamiltonian of a
free oscillator. This requirement makes it possible to formulate, in accordance with the OR, the
conditions [7]:

0gy(E) ~0 0¢,(€) _

Ow, " dw,

for determining the frequencies w/ and 2. of the uncoupled oscillators, which determine the main
quantum contribution. Taking into account Eq. (2.24), we can use Eqs (2.20) and (2.25) for calcu-
lating the energy E; of the intrinsic system as a function of parameter R.

0 (2.25)

3 Determination of the dependence on the term E(R) from the parameter R

We proceed to the determination of the dependence the term E((R) on the parameter R in the
zeroth order approximation of OR. Taking into account (2.24) and from the system of equations
which are represented in (2.25) and (2.20) we can determine the oscillator frequencies w1 and wa,
and also the energy spectrum of the intrinsic system E((R) as a function of the parameter R. In the
general case, this system of equations, of course, is not solved analytically. Therefore, first of all we
considered the particular cases. Let us consider the case when R = 0, then from (2.24) we have

2dE. 2dE
gy (€)= 9@ don 20E 20 o @z +7) (3.1)
4 4 @, W,
In this case from (2.26) we get
o, =, =,—8E, (3.2)

So the oscillator frequencies are equal w1 = w2. Now we consider the other limiting case: R = o0; in
this limit, from (2.24) we have

£y(E.) = dao, N do, 2dE, 2dE, (3.3)
4 4 @, ,
Thus, in the limits R = 0 and R = oo, the frequencies of the oscillators are equal, and the term of the
two-Coulomb center is defined analytically.
Let us determine the term of the two-Coulomb center as a function of the parameter R in the
intervals of the values for the parameter: 0 < R < oo. Now we introduced new parameters
o =%, GO (3.4)
2 2
and these new parameters also depend on the parameter R. According to (3.2),atR =0 and R = o,
the parameter @_ is equal to zero, since the electron wave function becomes spherically symmetric.

Thus, the parameter @_ is connected with the dipole moment interactions. From (2.24) for the
ground state (m = 0) energy of the modified SE, we obtain:

&(E,) = o, —%—4@3 — )| [dp.dB, expl-0, (B, + B,) (B, — B,)}x
+ - 00 (35)
2,208, + By) N Z,Z,0(B,+ By)

\/(ﬂl +132)2 +2C1R(ﬂ1 _ﬂz)"'ClZRZ \/(,Bl +ﬂ2)2 _2C2R(ﬁ1 _182)"'(:22R2
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For further calculation we introduced the following new variables

S+t t—s

B 5 P N
w_ .
o=, y=—,; b;=¢R; =12 (3.6)
a)+
and after some simplification from (3.5) we have
8E
€o w1 —7%)x

Z,2

V1+2xt+t2

According to (2.20), (2.24) and (2.26), the term of two-Coulomb center is defined in the following
way:

x [dtt? [ dx*{Z,be 07 4 7 et} (3.7)
0 0

2 -aoR

EO(R) = % w2

-e™ %) (3.8)

4 The interaction potentials of electrons in QD
The solution of SE defines the property and behaviour of electrons in QD. Taking into ac-

count (2.10), and (2.12) and after averaging of the wave function of the intrinsic systems ®(R,F)
from (2.7) we obtain for the SE with taking into account the influence of the layers

1= U -
{E Pg + Vi (R) + E}Z(R) =0 (4.1)
where Viot(R) is the total potential of electrons in QD and in the ordinary units[4] is represented as
11,0
Vi = =g BRI+ 5 (' (42)
a @

and m* is the effective mass of electrons, and a* is the effective Bohr radius. The first term in Eq.
(4.2) is the Coulomb potential and Er(R) is the potential creating electrostatical field of image
charge. The third term in Eq.(4.2) is connected with the relative motion of electrons in QD and the

contribution of this term as compared to E® (R) is less than an order [11] and the further calcula-

tion it should be neglected. All parameters of the total potentials which are represented in (4.2) are
determined and the potential consists of two parts: the Coulomb potential and the confinement po-
tential. Let us consider the limit R << 1; from (3.8) we get

2
EO(R) =“’—2°(—1+%w§R2 +O(RY) (4.3)

where

anz, 4z, m;
a F h 47&950

Thus, in the limit R<<1 the additional potential which is created by the image charge is parabolic.
Now the total potential, represented in (4.2), can be rewritten in the form

V=V, (R)+Vs (R) (4.4)
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where Vv is the vector or the one-photon exchange potential
1
*

V, = = (4.5)
and Vs is the potential confinement which blocks electrons in QD
o’ 1-e R
V. =— —w,0(2 —e R 4.6
5= "% ( R ) (4.6)

So the blocked electrons in QD are influenced by Coulomb force connected with the electric charge
and confinement potential which is caused by the difference of dielectric permeability layers.

5 Spin-orbital interactions of electrons in QD
In (4.4) we analytical by defined the interaction potential of two electrons in QD. This poten-
tial consists of two parts: first, the Vv vector potential connected with the one-photon exchange and
second, the Vs blocking potential. However, for determination of the interaction potential of two
electrons in QD we cannot take into account spin interactions of electrons. Let us determine the po-
tential of electrons in QD with spin-orbital interactions. First of all, we should like to note some dif-
ference between electrons in QD and electrons in ordinary atoms. In usual atoms a bound state is
realized via the central Coulomb force and for electrons in QD the attraction central force is absent.
Therefore, we must determine the spin-orbit interaction of electrons in which a bound state is real-
ized via the blocking parabolic potential and the repulsed vector potential. On the other hand, fer-
mions with interaction potentials of a similar nature are common by known in particle physics,
namely the nonrelativistic quark model, and the spin-orbital potentials are defined as (for details
see [21])
1

2m, -m,

Hy, = B 00—V (9]-(C-5) (5.0
Here Vv is the vector potential connected with the one-gluon exchange and Vs is the growing poten-
tial which provides confinement of quarks, x is the distance between quarks, and my, my is the mass
of quarks. The behaviour and the blocking mechanism of electrons in QD have a similar nature with
confinement of quarks in hadrons. Therefore, we assume that the spin-orbital interaction of elec-
trons in QD and quarks in meson is analogous. Then, according to (5.1), the spin-orbit interaction
Hamiltonian for electrons in QD can be rewritten in the form
1 d

== —V R)-—V (R L-S 5.2
T [ (R) - pr (R)]-(L-S) (5.2)
where Vv(R) is the vector potential and Vs(R) is the blocking potential electrons in QD, and this po-
tentials are presented in (4.5) and (4.6), respectively. In (5.2) L is the operator of orbital momentum
determined in a standard way

AL =[Rx P,]=—in[RxV,]; L=—-i[RxV,] (5.3)
and S is the spin operator satisfying the following identity
(L-S)=i(R-[SxVg]) (5.4)
Then the total potential of electrons in QD with the spin-orbital interaction has the form
Vi (R) =V, (R)+Vs (R) + Hg (R) (5.5)

Let us determine the condition of domination of the spin-orbital interaction of electrons in QD. The
electrons in QD have two forms of interaction: the vector potential Vv(R) is the repulsed Coulomb
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potential and Vs(R) is the blocking potential. The results of experimental investigation of nanostruc-
ture shows that, the QD is a more or less stable object. This indicates that the repulsed and the
blocked forces are balanced. Then we assume that there exists such a distance R = Ro at which the
repulsed and the blocking potential annul themselves. So this distance is determined from the equa-
tion

Wy (Ro) +V5(Ry) =0 (5.6)

From this equation the parameter Ro is determined as a function of effective mass electrons and of
the image charge Zz. On the other hand, the parameter Ro can be considered as an effective size of
QD. Taking into account (5.6) and after some standard simplifications from (5.2) we get for the
Hamiltonian of the spin-orbital interaction:

1 * 2

o 4R, R 'af

where w is the oscillator frequency. Now the dimensionless variables (1, 1) are introduced

Hg = )5 I(R [SxVeD) |or (5.7)

w=w,1, R, = £ (5.8)

2
and these variables are substituted in (5.7); after some simplifications the spin-orbital interaction
Hamiltonian is rewritten in the following way:

1 N
Ho = —y 2
Soomton? o 4t

e

(m Z,—2)-i(R-[Sx Vi ])|ace, (5.9)

Taking into account (5.8) and (5.6) we have two systems of equations for the dimensionless varia-
bles z, #:

e
11 nt 1-e™ g
82, = 4 T 2 (5.10)
n—@A+nr)e™ =0

From this systems of equations the variables t, # are determined as functions of the image charge

Zs. Using the representations for the spin operator (S =1/2-&) and for the momentum operator

(ﬁR = —iV ) and taking into account (2.6), from (5.9) we get for the spin-orbital Hamiltonian
He =Kso(o,P, —0,P,), (5.11)
where ¢ is the Pauli matrix, and Kso is the spin-orbit coupling constant
1

1 1
Keo=-ma’ 1,-——2-7
s0 = 5 Me@em "Fe ™ Rbg( n ;

(5.12)

here aem is the coupling constant electromagnetic interaction and 0, Smeaem? = 13, 605698 eV is the
Rydberg energy; re = e?/4neome = 2, 81794-10"1°[m] is the classical radius of electron, and Ry is the
distance between electrons in QD in which the repulsed and the blocked forces annul themselves; in
the units of Bohr radius this distance is rewritten as follows:

2
R, =&=ri(me] . (5.13)
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Then from (5.12) for the effective spin-orbital coupling constant we have

32
m, T

2 52
K¢, =0.06134 ( mi j Z3 (2-11°Z,) [10" eV'm] (5.14)
£

From (5.13) and (5.14) we see that the effective size of QD, or the parameter Ry, and the spin-
orbital coupling constant Kso of electrons in QD are determined as functions of the image charge
and the effective mass of electrons. According to (2.1), the image charge depends on the difference
of dielectric permeability of layers, so the variables Ry and Kso also depend on this difference. The
numerical values of these parameters, of course, should depend on a concrete structure of the nano-
crystal. Therefore, for investigation of the dependence spin-orbital coupling constant on the dielec-
tric permeability of layers and also on the electronic density of the system the consideration of a
concrete nanostructure is necessary.

6 Results and Discussion

We assume that the image charge is positive. This assumption gives a possibility to explain
the mechanism of blocking electrons in QD. From (2.2) we see that the image charge depends on
the difference of dielectric permeability of layers. On the other hand, we know that the existence of
nanostructures of different of dielectric permeability of layers influences the electrical and optical
properties of the system. Such nanostructures are: semiconductor nanocrystal [22] and quantum
wire [23] arising in the dielectric matrix and also porous silicon [24] and others. In Eq.(5.14) the
spin-orbital coupling constant is analyticaliy determined and this gives the possibility to investigate
the dependence of this constant on the image charge and other properties of the system. From (5.14)
we see that the constant Kso quadratically depends on the effective mass electrons. The effective
mass of electrons in the nanostructures, of course, depends on the composition of the structure. The
results of experimental investigations [25] show that the effective mass of electrons depends on the
density of electrons and the linear size of QD. Thus, the constant Kso depends on the effective mass
of electrons and the linear size of QD.

Let us consider the two-electron QD which arises on the border of two connections GaAs and
GaAlAs. The dielectric permeability of QD arises on the border of these connections depending on
the QD size and changes the limits (the detail see [10, 26]): ecaas = 6,1 + 13 ; in this case, the effec-
tive mass of electrons equals m*e = 0, 067me.

Figure 1 illustrates the dependence of the spin-orbital coupling constant KSO on the image
charge for the given values of . From Fig.1 we can see that with growing Zsz the coupling constant
Kso also increases. At small values of ¢ dielectric permeability of the QD the increase in the cou-
pling constant Kso is drastic.

100

so

80 |
1,2

- 1,04
60

0,8
40 0,6
He e=3 ) 0,4

20 0,2

0,0

12 1,4 1,6 1,8 0,4 0,6 0,8 1.0 1.2 1.4 1,6 1.8 2,0

Figure 1 Figure 2
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Figure 2 represents the Ry dependence of the effective size of QD on the image charge Z3 for
the given values of €. Prom Fig.2 we can see that with growing Zs the size Ry decreases. This means
that the blocking electrons in QD are realized due to Za.

Figure 3 shows the dependence of the spin-orbital coupling constant Kso on Ry the effective
size of QD for the given values of €. From Fig.3 we can see that with growing Ry the coupling con-
stant Kso decreases.

The effective coupling constant of the spin-orbital interaction for the structure InGaAs with
effective mass of electron m* = 0.042m. was experimentally obtained in Ref. [27]: Kso = 1,5-10!
[eV-m]. From (6.14) at the values of the parameters € = 3 and Z3 = 0,68 we have Kso = 1,5-10°
H[eVv'm]. Unfortunately, in our analytical results, for coupling constant Kso represented in (6.14)
depends some parameters such as the s dielectric permeability of the QD, effective mass m* of elec-
trons and the difference of dielectric permeability of layers. At the present time these parameters for
every QD cannot be defined experimentally. However, just these parameters can be determined ex-
perimentally for the given nanostructure.

On the basis of the obtained results we can conclude:

e The account of the multilayer structure of nanocrystal leads to additional interactions be-
tween electrons in QD and the explicit form of this potential is represented in (5.7). On the other
hand, to describe the properties of QD one can successfully use the phe-nomenological potentials,
in particular, the parabolic confinement [4] and in this case, the frequency of the oscillator is a free
external parameter. If we assume that the relative distance of electrons or the effective size of QD
are sufficiently small then from (5.7) we obtain the parabolic potential. In our case, the frequency of
the oscillator or the intensity of blocking electrons in QD depends on the difference of dielectric
permeability of layers, and when the structure is uniform then the frequency is equal to zero. So
"traps" for electrons in the nanostructure should not arise in any contact layer.

« The interaction potential of electrons in QD consists of two parts: first, VV is the vector
potential and second, VS is the confinement (blocking) potential of electrons in QD and represented
in (5.7). Thus, the interactions of electrons in QD differ from the interactions of electrons in ordi-
nary atoms and these potentials are very similar to the potential quarks in hadrons. Also, both the
electrons and quarks are fermions and the wave functions are determined from the Dirac equations.
Therefore, we assume that the spin-orbital interactions of electrons in QD are defined analogously
as quarks in the nonrelativistic potential model. Based on this suggestion the spin-orbital Hamilto-
nian of electrons in QD is defined.

e The results of experimental investigations of the QD show that the QD is a stable equilib-
rium state. This means that the forces of the Coulomb repulsion and blocking of electrons in QD are
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balanced. Therefore, we assume that there should exist such a distance at which these forces are
cancelled. In this case, only spin-orbital interactions acts between electrons in QD. This suggestions
was used to study the dependence of the coupling constant of spin-orbital interactions on the image
charge and the effective size of QD
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KBAHTTBIK HYKTEJEI'T QJEKTPOHJAPABIH CIIMH-OPBUTAJIBIK OCEPJIECYI
M. Hineiixan, C. Kayramena, O. UmamobexoB, LII.CopcemOuHoOB

DNeKTpOHAapbl KBAHTTHIK HYKTEIE HOKTANAYIbIH HAHOKPHCTAJULABIH opOip KaOaTBIHBIH JCEpiH
€CKepeTiH OanmaManbl 9Jici YChIHBUIFaH. HaHOKpUCTAIIIBIH KONKA0ATThl KYPBUIBIMBIH €CKEPY 3JEKTPOHAAp
apachIHAAFbl KOCBIMINIA dcepiecyre aibin Keneni. OChl 9cepiIecyAiH CUIAThl aHBIKTAIFaH. DIIEKTPOHIAPIABIH
e3apa KaIIBIKTBIFBI MapJbIMCHI3 a3 OoiFaHia on mapabona TypiHae ekeH. Ochl mapaboiia >KUUTTIHIH
Ka0aTTapAbIH JUAJICKTPIIK OTIMIUIHEH TOYENAUIri 3epTTenreH. KBaHTTHIK HYKTEIETi AJIeKTPOHIAP/IBIH
CIMH-OPOUTAIBIK ocepiecyl aJpOHHBIH PEJIATHBTI €MeC MOTCHIUAIIBIK MOJCIIHICTI KBapKTapAbIH
oceprecyiHe yKcac nemn skopamangaHrad. Ochl Kopamall HETi3iH[e SIeKTPOHIAPIbIH KBAHTTHIK HYKTEAET1
CIHMH-OPOUTANBIK dcepiecyi aHbIKTanFad. CHIUH-OpPOMTANBIK ocepiieCyAiH OaiijlaHbIC TYPaKTHICHIHBIH
OcifHesey 3apsiibl MEH KBaHTTHIK HYKTCHIH THIMJI1 ©JIIIIEMIHCH TOYEIILIITT 3epTTEITCH.

CIIUH-OPBUTAJIBHOE B3AUMOJIEVICTBUE 3JIEKTPOHOB B KBAHTOBOM TOYKE
M. [uneiixan, C. Kayramena, O. Umamoexos, III. Capcem0uHoB

Jis oOBsICHEHUsT yAepKaHUs JIEKTPOHOB B KBAHTOBOHM TOUYKE MPEIIOKEH albTePHATHBHBIA METO]I,
YUYUTHIBAIOIIMH BIMSIHUE KaXA0r0 U3 CIOEB HAHOKPUCTAIIA. Y YET MHOTOCIOMHON CTPYKTYPhl HAHOKPUCTAJI-
Jia TIPUBEAET K JIOMOJIHUTEIBHBIM B3aUMOJENCTBUSAM MEXIY 3JleKTpoHaMmu. HalieHn Bua 3Toro B3aumojaei-
cTBus. Korma oTHOCUTENIEHOE PacCTOSTHUE MEXK/TY 3JICKTPOHAMH JIOCTATOUYHO MaJICHBKOE, OHO MMeeT napado-
nudeckuii BuaA. M3ydeHa 3aBHCUMOCTh 9aCTOTHI TAKOTO MapaboIMdecKoro MOTeHIIMANa OT JUIIEKTPHYECKON
MPOHUIIAEMOCTH CJIOCB. [IpenoaokeHo, YTo CUH-0pOUTAIbHOE B3aUMOICHCTBHE 3JICKTPOHOB B KBAHTOBOM
TOYKE aHAJIOTUYHO B3aMMOJIEMCTBUIO KBApKOB B HEPEISTUBUCTCKOM MOTEHIMAIBHOM MOAENMU aJpoHOB. B
TaKOM TPEIOJI0XKEHHH OTPEAENIEHO CTUH-OpOUTAIIFHOE B3aMOECHCTBUE DIIEKTPOHOB B KBAHTOBOW TOYKE.
N3ydeHa 3aBUCHMOCTh KOHCTAHTBI CBSI3M CHHH-OPOWTAIFHOTO B3aMMOJIEHCTBHS OT 3apsjia M300paKeHHs H
3¢ (HEeKTUBHOTO pa3Mepa KBAaHTOBOM TOUKH.
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