СТРУКТУРНЫЕ ОСОБЕННОСТИ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ПРИ МОДИФИКАЦИИ ЕЕ ПОВЕРХНОСТИ ИМПУЛЬСНОЙ ПЛАЗМОЙ

Б.М. Ибраев, А.М. Жукешов, А.Т. Габдуллина

КазНУ имени аль-Фараби, НИИЭТФ, г. Алматы

Методами электронной микроскопии и рентгеноструктурного анализа была исследована микроструктура поверхности низкоуглеродистой стали после воздействия импульсных плазменных потоков.

В настоящей работе представлены результаты исследований импульсного плазменного воздействия на поверхность конструкционных материалов, в частности, структурных изменений. Данные получены при обработке низкоуглеродистой стали на коаксиальном плазменном ускорителе КПУ-30 в режиме сплошного наполнения воздухом рабочей камеры ускорителя. Обработка в данном режиме характеризуется однородностью распределения энергии плазменного потока по поверхности образца-мишени. Особенности работы ускорителя в этом режиме описаны в работах [1, 2]. Эксперименты проводили при вариации основных параметров импульсного воздействия: плотности энергии плазменного потока Q, остаточного давления воздуха в камере P и количества импульсов воздействия плозменного сгустка зависит от давления следующим образом, представленным на рисунке 1.

Рис.1 – Изменение Q при различных значениях остаточного давления воздуха в камере ускорителя КПУ-30

В работе сделан сравнительный анализ экспериментальных данных обработки исследуемого материала в энергетическом диапазоне Q=5-50 Дж/см² при давлениях P=0,5; 0,1 и 0,04 мм.рт.ст. одним и несколькими импульсами. Для анализа структуры поверхности стальных образцов после воздействия импульсных плазменных потоков (ИПП) были применены широко известные методы: растровой электронной микроскопии (РЭМ) и рентгеноструктурного анализа. Кроме того, для выявления микроструктуры обработанные образцы были подвержены электролитическому и химическому травлению.

Из результатов рентгеноструктурного анализа на дифрактометре D8 ADVANCE фирмы BRUKER с использованием медного излучения с монохроматором на дифрагированном пучке следует, что в образцах низкоуглеродистой стали после обработки при давлении P=0,04 мм.рт.ст. в модифицированном слое формируется двухфазный раствор, состоящий из твердого раствора α -Fe (основной фазы исходного состояния) и γ -Fe. Появление γ -Fe говорит о нагреве поверхности стали до температур, при которых возможен частичный переход α железа (феррита) в аустенитную фазу (γ -Fe). При этом обнаружена активизация процесса аустенизации с увеличением Q и n (рисунки 2,3).

Рис. 2 - Изменение размеров кристаллитов феррита и аустенита в образцах углеродистой стали при импульсной плазменной обработке

Полученные результаты хорошо согласуются с данными, полученными на РЭМ. Изменение размера зерна четко прослеживается на фотографиях микроструктуры поверхности после травления на зерно (рисунки 3-4) и может быть обусловлено растворением крупных зерен и увеличением дисперсности структуры с ростом Q (рисунок 3). Размельчение зерна связано с поверхностным упрочнением сталей [3].

В

ิล

Рис. 3 – Структура поверхности стальных образцов №3 (Q=16 Дж/см²), 4 (Q=21,8 Дж/см²), 5 (Q=32 Дж/см²) после обработки плазмой воздуха при Р=0,04 мм.рт.ст., n=1 (увеличение 2000 раз)

а

В

б

Г

а, в, д – структура поверхности при увеличении в 400 раз, б, г, ж – увеличение в 2000 раз

Рис. 4 – Формирование двухфазного раствора при плазменной обработке (Р=0,5 мм.рт.ст., n=1, образцы №1 (Q=5 Дж/см²), 2 (Q=7,5 Дж/см²), 4 (Q=14 Дж/см²) соответственно)

Стадии формирования двухфазного раствора отчетливо видны на рисунке 4. Как видно из рисунка, двухфазный раствор образуется в виде выделений по границам зерен уже при небольших Q (образец №1) и с увеличением плотности энергии плазменного потока проходит ряд последовательных стадий (образцы №2, 4). Активизация процесса аустенизации достигает максимальных размеров при многократном воздействии плазмы в заданном режиме (рисунок 5).

Рис. 5 – Микростуктура низкоуглеродистой стали после многократного воздействия плазмы

Аустенизации способствует высокоскоростной нагрев поверхности материала, который имеет место при электронной обработке. В результате большое количество карбидов исходного материала растворяется и трансформируется в аустенит с высоким содержанием углерода [4]. Данные стехиометрического состава исследуемой стали на рентгеноспектральном микроанализаторе JSXE-733 хорошо согласуются с полученными результатами (таблица).

Таблица	– Изменения	в элементном	составе	низкоуглер	родистой	стали посл	пе воздей	іствия
плазмы возд	уха							

№ образца	С,	Al,	Si,	Ti,	Ca,	Cr,	Mn,	Fe, %	Cu,	Ni,	0,
	%	%	%	%	%	%	%		%	%	%
исходный	0,2	-	0,42	-	-	0,13	0,37	98,51	0,34	0,22	-
4 (n=1, 0,5	0,2	0,09	0,27	-	0,10	-	0,12	72,31	0,17	-	26,9
мм.рт.ст.)											
9 (n=1, 0,04	0,22	-	0,41		-	0,14	0,48	98,49	0,47	-	-
мм.рт.ст.)											
1 (P=0,1	5,99	-	0,36	-	-	0,16	0,48	92,38	0,63	-	-
мм.рт.ст.,											
n=5)											
2 (P=0,1	6,4	0,42	0,27	0,1	-	0,14	0,54	91,3	0,72	-	-
мм.рт.ст.,											
n=10)											
4 (P=0,1	7,89	-	0,3	0,18	-	0,16	0,38	88,74	2,13	0,21	-
мм.рт.ст.,											
n=30)											

Результаты рентгеноспектрального анализа показывают, что многократная обработка импульсами плазмы приводит к трансформации низкоуглеродистой стали (≤0,25 % С) в высокоуглеродистую аустенитную (>0,6 % С) при пятикратном воздействии (таблица). Высокое содержание углерода в железе обеспечивает протекание эвтектического превращения, при котором может быть достигнута высокая степень диспергирования структуры стали. Кроме того, при многократной плазменной обработке обнаружено формирование мартенситной фазы (5-10 импульсов) в небольшом количестве, что также характерно и для процесса аустенизации поверхности материала в результате электроннолучевого воздействия, когда аустенизированные слои трансформируются в мартенсит за счет

диффузии тепла внутрь матрицы материала. Формирование мартенсита возможно при очень высоких скоростях охлаждения, даже если стали имеют очень низкую способность к закалке [5]. В этом случае аустенит располагается, как правило, по границам реек мартенсита [3]. При этом упрочняемая микроструктура получается мельче, чем при обычной термической обработке, в результате твердость и, как следствие, износостойкость возрастают. Увеличение количества импульсов n сопровождается дальнейшим уменьшением процентного содержания железа и соответственно увеличением углерода, что может быть обусловлено фазовыми преобразованиями, формированием аустенитно-мартенситной структуры за счет насыщения углеродом металлической матрицы. Такие фазовые превращения должны сопровождаться упрочнением поверхностного слоя [6].

Литература

1. Ibraev B.M.// Peculiarities of the generation of a plasmoid in a pulsed coaxial accelerator. Journal of Engineering Thermophysics. -V.12. -No.2.-P.183-190

2. Жукешов А.М. Особенности формирования плазменного потока в импульсном ускорителе //Вестник КазГУ. Серия физическая. – 2003.- №3(14).- С.102-105

3. Федорова О.В., Николаенко В.В., Ляшенко В.Н., Васильев В.И. Повышение работоспособности режущего инструмента из быстрорежущей стали Р6М5 методом обработки ВТИП//Тезисы докладов 4-ой Всесоюзной конференции «Взаимодействие излучения, плазменных и электронных потоков с веществом. – Фрунзе. – 1990. – С.152-153.

4. R.G.Song, K. Zhang, G.N.Chen Electron beam surface treatment. Part I: surface hardening of AISI D3 tool steel.//Vacuum. Surface engineering, surface instrumentation and vacuum technology. -69. -2003. -P.513-516

5. Taugir A., Zaigham H., Hashmi F.H., Khan A.Q. //J. Mater. Sci. -1997. -32. -P.465

6. Лященко В.Н., Николаенко В.В., Федорова О.В. (МАТИ им.К.Э.Циолковского (Москва), ФИАЭ им.И.В.Курчатова (Троицк)) Упрочнение отверстий в чугунном поршне методом обработки ВТИП //Тезисы докладов 4-ой Всесоюзной конференции «Взаимодействие излучения, плазменных и электронных потоков с веществом. –Фрунзе. – 1990. – С.140-141

ИМПУЛЬСТІК ПЛАЗМАНЫҢ БЕТІНІҢ ТҮРЛЕНУІНДЕГІ БОЛАТТЫҢ ТӨМЕНГІ КӨМІРТЕКТІ ЕРЕКШЕЛІГІНІҢ ҚҰРЫЛЫМЫ

Б.М. Ыбраев, Ә.М. Жүкешов, А.Т. Ғабдуллина

Электронды микроскопия және рентген құрылымдық талдау әдісі негізінде импульсті плазмалық ағын әсерінен кейінгі төменгі көміртекті болат бетінің микро құрылымы зерттелді.

STRUCTURAL PECULIARITIES OF LOWCARBONIZED STEEL AT MODIFICATION ITS SURFACE BY PULSED PLASMA

B.M. Ibraev, A.M. Zhukeshov, A.T. Gabdullina

By electronic microscopy and X-ray analyse methods the surface microstructure of lowcarbonized steel after influence of pulse plasma flows was investigated.