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Spectrum and damping decrements of Langmuir and ionsound waves in nonideal plasma are found.
Potential considering quantum effects of diffraction is used. Local fields are considered through the theory of
linear dielectric response and numerical solution of Ornstein-Zernicke equation in hypernetted approach.

1 Pseudopotential model

For proper investigation of dielectric properties of dense plasma one should consider quantum
effects and local fields, playing significant role in such plasma [1]. For that aim pseudopotential,
considering quantum effects of diffraction and local fields is constructed in the framework of linear
dielectric response theory.

The effective potential considering quantum effects was proposed by Deutch and co-authors

in work [2]:
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where Ay =h/(27wakaT)l/2 - refers to the thermal de Broglie wavelength, s is the reduced mass of
interacting particles, Top :(ma-rﬂ +MgT, )/(ma + mﬂ)- In expression (1) the exponential term with
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the thermal de Broglie wavelength accounts for the quantum effects of diffraction. It is worthwhile
to notice that if expressed in plasma parameters, the thermal de Broglie wavelength is Aas /a~
(T'/rs)¥2 (a is the average interionic distance a=[3/(4m )%, ni is the ion number density,
I'=e?/(akeT) is the coupling parameter, rs=amee?/4? is the dimensionless density parameter) thus, the
less value of the parameter rs is chosen, the more influential quantum effects upon potential (2) are,
that is the more dense plasma, the more significant quantum effects are. One can see that
considering quantum effects in potential (1) leads to decrease in forces, acting between particles
(decrease in electron-electron and ion-ion repulsion and electron-ion attraction), that is plasma
became less “elastic”.

In order to consider local fields one can use local field functions. Electron-electron local field
function Gee(K) can be found by the following formula:
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Here Ce is the electronic direct correlation function, obtained from the solution of HNC equation,
with the aid of scheme proposed in [3], using Fourier transform of electron-electron potential (k)

(D).
The ion-ion pseudopotential, taking into account local field correction, quantum effects and
the electron screening of ions is derived in the framework of the linear density-response formalism:
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Unlike the Debye and the Coulomb potentials (which are also screened), pseudopotential (3) is
finite at r=0, because it takes into account quantum effects, like the Deutch potential (1). For small
values of the coupling parameter /<1 and at small interparticle distances, ion-ion pseudopotential
(3) approches to the ion-ion Deutch potential (1), as both potentials consider quantum effects of
diffraction, and at large interparticle distances approaches to the Debye potential respectively, as
they both considers the screening phenomena. If one puts Fourier images of the Colomb potential

into expression (3), ¢, =@, =4x/k*, and takes local fields equal zero, éee(k) =0, then one gets

the Fourier image of the Debye-Huckel potential CI>=47z1“/(k2 +1/rD2), what demonstrates us

screening properties of pseudopotential (3). At large values of I', pseudopotential (3) and the
Debye-Huckel potential start to diverge as the more 7, the more influential local fields are.
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Fig.1: lon-ion pseudopotential (3) at rs=1 for various I’

As Fig.1 demonstrates, when I" grows the ion-ion pseudopotential acquires potential well,
deepening with increase in I". As numerical calculations show, the appearance of the potential well
is caused by the local fields. The depth of the well increases with the decrease in rs, and, therefore,
the quantum effects deepen the well.

Having found the ion-ion pseudopotential, one can calculate ion-ion local field function via
the following expressions:
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ge(k) is the electronic dielectric function, C:i (k) symbolizes the Fourier transform of ionic direct

correlation function, obtained from the numerical solution of the Ornstein-Zernike equation in the
hypernetted approximation for pseudopotential (3). In this case the Ornstein-Zernike equation is
solved without the aid of an auxiliary function as in [3], as pseudopotential (3) is screened, unlike
potential (1), which is close to the Colomb potential at large distances.

Hereby using effective potential (1), in the framework of linear dielectric function we
constructed the pseudopotential model, considering quantum effects of diffraction, local fields and

19



screening effects, playing significant role in dense plasma. With the aid of this pseudopotential
model we further investigate the dielectric properties of nonideal plasma.

2. High frequency waves propagation in an nonideal hydrogen plasma.
Theory of linear dielectric function says that the dielectric function of a plasma can be written

as:
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here ., (k,a)) is the response function of particles of kinds a and b, @,, (k) - Fourier transform

of potential of interaction of particles, Gab(k) - local field functions, the screened functions
79 (k, w)can be found via the following formula:

7 (K,0) = k”ér w[i] ©)
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Here vy = (kgT /m,)"* is the thermal velocity of particles a, function W (z) is a well known
function:

W(z)=1- zexp(—zzIZ)IOZexp(yZIZ)dy+ i\/%zexp(—zZIZ), (10)

having asymptotical expansion at z<1:
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and at z>1:
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Putting expressions (7)-(8) into (6), we get the expression for dielectric function:
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It is well known [4], that the condition of existence of longitudinal waves is
g'(k,w)=0, (14)
thus one gets
0~ 200 1-G - xO0il1-Gi - 22 2O pup -G, 1-G,]=0,  (5)
5 (K. w) = Ame’® _ _
where @Pg (K, K2 (1+ K ﬂ‘ék) - Fourier transform of potential (1).

Having solved equation (15), using (9), the dispersion relation is obtained:
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The phase velocity of high frequency waves is much greater then the thermal velocities of

charged particles ” »VTE,VT,, thus using formula (12) one can get the expression for the dispersion

relation of plasma:

: 2 (1- 2 kVZ2) 1-G,)
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Using the condition of existence of propagation of longitudinal waves in plasma (14) and
expression for damping decrement [4]
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Ime(w,k)

(k) == OReg(w, k) (18)

ow

one can obtain spectra w(k) and damping decrement §(k) of plasma waves:
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One can see from formula (19), that considering quantum-mechanical effects of diffraction of
electrons leads to decrease in Langmuir waves frequency, what can be explained that, as it was
aforesaid, electron diffraction decreases force of repulsion between electrons and the electron gas
becomes less “elastic”. Local field corrections diminishes the Langmuir frequency as the electron-
electron functions of local fields are positive. Formula (19) shows that when plasma density grows,
the dispersion of Langmuir waves can turn to anomalous (k) < @,,. Such dispersion of plasmons,

shown in fig. 2 was predicted in work [1] on the basis of pseudopotential model, considering
quantum effects and local fields and in work [5] on the basis of molecular dynamics data.
Collisionless damping decrement (20) is changed in the result of change of phase velocity of plasma
waves Vpnase=@/k due to change in spectra. Formulae (19), (20) are generalizations of corresponding
formulae for classical plasma [4].
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Fig 2. Langmuir spectrum at /=2, rs=1.
Solid line — classical plasma, dash line — formula (19).
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2. Low frequency waves propagation in an nonideal hydrogen plasma.
The condition of the low frequency mode is V «2 ” « V4., using formulae (11), (12), (16) the

dispersion relation can be written as:
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Using formulae (14), (18), one can get spectrum w(k) and damping decrement d(k) of low
frequency longitudinal waves:

ii De (22)
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where A:(1+k2ﬂ~§exl+kzﬂi2i)_(1+kzﬁv§i)2 ’ (1+k22’§i)2 (1+k2ﬂ,§ex1+k22«i2i).

It is easy to notice, that formulae (22) and (23) are generalizations of classical formulae for
low-density plasma [4].
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Fig.3. lonsound waves spectra at =2, rs=1.
Solid line — classical plasma, dash line — formula (22).

Formula (22) shows that quantum-mechanical effects of electron diffraction increase, and
those of ions decrease ionsound wave frequency. Frequency of oscillations in a dense plasma is
higher then classical plasma oscillations, because the electron thermal de Broglie wavelength is
considerably greater then the ion thermal de Broglie wavelength, and contribution of the second
term in the numerator of the subduplicate fraction is insignificant, because B<< 1. Formula (22) also
shows that influence of electron-electron local fields increases and ion-ion local fields diminishes
ionsound frequency. Numerical calculations for various plasma parameters shows that ionsound
frequency in dense plasma is higher than that in classical case, wherein the difference between such
frequencies increases along with growth of plasma density, what is connected with growth of
effects of diffraction and nonideality. The form of damping decrement (2) is also qualitatively
changed. Numerical calculations for various plasma parameters says that dense plasma damping
decrement is higher then the classical one, wherein the denser plasma the higher difference between
both decrements, what is connected with growth of diffraction and nonideality effects.

Conclusion

This work is devoted for investigation of dielectric properties of dense high-temperature
plasma. For that aim a pseudopotential model, considering quantum effects of diffraction, local
fields and electron screening playing important role in nonideal plasma, is constructed. The
pseudopotential model is constructed on the basis of effective potential in the framework of theory
of linear dielectric response functions with the use of Ornstein-Zernike integral equation in
hypernetted chain approximation. Spectra and damping decrements of Langmuir and ionsound
oscillations are obtained with the aid of this pseudopotential model. It is shown that the expressions
for spectra and damping decrements are generalizations of classical expressions for rarified plasma.
The obtained results develop the theory of linear dielectric response functions and enable a
researcher to conduct further systematic investigations of dielectric, thermodynamic and transport
properties of nonideal plasma.
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MCEBIONOTEHIAAJJIBLIK MOJEJb HETT3TH/IE WJIEAJI EMEC IUIASMAHBIH
TUDJIEKTPJIK KACUETTEPIH 3EPTTEY

B.B. Boponkos

Ochl Makayaza ICEBAONOTEHIIMAIIBIK MOJEIb HETI3IHAE €Kl KOMIIOHEHTTI TOJIBIK MOHIAIFAH THIFBI3
KOFapFbl ~ TeMIlepaTypajarbl  IUIa3MaHBIH ~ JUAJIEKTPIIK  KAacHeTTepi  3epTTeiii. DJIeKTPOHIapMeH
dKpaHAaNydbl, JUPPAKIHUA JKOHE CHMMETPHUS KBAaHTTHIK d()(eKTiniepi, AMeKTPOH-3IEKTPOH/IBI JTOKAJIBI
epIiCTep/li €CKEePETiH MOH-UOH/IBI TICEBIONOTEHIIMAN albIHFaH. JIOKaIIbl epiCTepiH AICKTPOH-3JICKTPOHIBI
¢dbysxmusapeiH ecenrtey yiriH OpHmTedH-LlepHUKTIH WHTErpanasl TEHACYiH THIEPTi30€KTi KybIKTayaa
KoimaHemiaabl. KBaHTTHIK d(QexTinepaiH JkoHE JOKaIABl OpICTEpHiH IUCIEPCHUSIFa JKOHE oIy
JICKPEMEHTIHIH JICHTMIOPJTIK JKOHE MOH/IBI-IBIOBIC IIJIa3MOHIaphIHA dCepi OalKalI bl

NCCIEJOBAHUE JUDJIEKTPUYECKUX CBOFICT]% HEUJIEAJBHOM IJIA3MbI B
PAMKAX IICEBJOIIOTEHIIMAJIBHOU MOJEJIN

B.B. Boponkos

B nanHOW paboTe C MOMOIIBIO IICEBAONOTCHUHUAIBHON MOJENN HCCIEAYIOTCS AWAIEKTPUIECKUE
CBOMCTBA JBYXKOMIIOHEHTHOU IIOJHOCTHE) MOHU30BAaHHOW IUIOTHOW BBICOKOTEMIIEPATYpPHOM Ina3Mbl. Jlis
CO3JIaHHS TICEBJOMIOTEHIIMANBHOW MOJIETH, YUUTHIBAIONICH KBaHTOBbIE 3()(EKThI, KOJUICKTHBHBIC SIBICHUS U
3¢ eKTsl HeUJIeaTbHOCTH HCIOIb3YETCS TEOpUsl JMHEHHOIro IMAIEKTPHYECKOro OTKIMKa. MHTerpambHOe
ypaBHeHue OpauireliHa-LlepHuke B runepuenHoM NpHONMXEHUH WCIIONB3YeTCs Ul YUCIIEHHOTO pacuéra
AIIEKTPOH-3JICKTPOHHBIX M HMOH-WOHHBIX (DYHKIMH JIOKATBHBIX Toned. M3ydeHo BIMSHHE KBaHTOBBIX
3¢ }EKTOB U JOKAIBHBIX MOJIEH Ha TUCTIEPCHIO JIEHTMIOPOBCKUX KOJIeOAHMH U MIOHHO3BYKOBBIX IIa3MOHOB.
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