АСИМПТОТИКА МУЛЬТИКЛАСТЕРНЫХ ВОЛНОВЫХ ФУНКЦИЙ В БИНАРНЫХ СИЛЬНО СВЯЗАННЫХ КАНАЛАХ. 2. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Н.В. Афанасьева, Н.А. Буркова, К.А. Жаксыбекова, Ч.З. Кабытаев

НИИЭТФ, Казахский национальный университет им. аль-Фараби, г. Алматы

Представлены результаты расчетов асимптотических констант для радиальных волновых функций в бинарных кластерных изобар-аналоговых каналах ${}^{6}\text{He} + p$, ${}^{6}\text{Li} + p$, ${}^{6}\text{Li} + n$, ${}^{6}\text{Be} + n$.

В первой части настоящей работы [1] был представлен и обоснован математический формализм расчета асимптотических констант для радиальных функций в бинарных сильно связанных каналах, построенных методом проектирования в модели динамической кластеризации (МДК) [2,3]. В рамках МДК нами были рассчитаны спектроскопические ⁷Li{ α t} \rightarrow n⁶Li{ α np}, характеристики для изобар-аналоговых каналов распадов ⁷Be{ $\alpha\tau$ } \rightarrow p⁶Li{ α np}, ⁷Li{ α t} \rightarrow p⁶He{ α nn}, ⁷Be{ $\alpha\tau$ } \rightarrow n⁶Be{ α pp}, ⁹Be{ $\alpha\alpha n$ } $\rightarrow p^{8}Li\{\alpha tn\},$ ⁹Be{ $\alpha\alpha n$ } $\rightarrow d^{7}Li\{\alpha t\},$ ⁹Be{ $\alpha\alpha$ n} \rightarrow t⁶Li{ α np} И ⁹Be{ $\alpha \alpha n$ } $\rightarrow \tau^{6}$ He{ αnn } (в фигурных скобках указан тип кластерной конфигурации соответствующего ядра) с образованием тяжелых фрагментов как в основном, так и в низколежащих возбужденных состояниях [2,3].

В настоящей работе представлены результаты численных расчетов асимптотических констант для радиальных волновых функций в однонуклонных каналах фрагментации для ядер с A=7, а именно ⁷Li{ α t} \rightarrow n⁶Li{ α np}, ⁷Li{ α t} \rightarrow p⁶He{ α nn}, ⁷Be{ $\alpha\tau$ } \rightarrow p⁶Li{ α np}, ⁷Be{ $\alpha\tau$ } \rightarrow n⁶Be{ α pp}.

В бинарных каналах асимптотическая константа C_0 находится из уравнения сшивки с функцией Уиттекера $W_{2}(2k_0 r)$

$$R_{lj}(r) = \frac{\sqrt{2k_0}}{r} \cdot C_0 \cdot W_{\gamma l}(2k_0 r),$$

где $k_0^2 = -\frac{2\mu\varepsilon_{\tilde{n}\hat{a}}}{\hbar^2}$ – квадрат волнового вектора, соответствующий энергии связи $\varepsilon_{\tilde{n}\hat{a}}$ системы с

приведенной массой μ ; $\gamma = z_1 z_2 \cdot \frac{e^2}{\hbar c} \cdot \frac{\mu c^2}{\hbar c} \cdot \frac{1}{k_0}$ – кулоновский параметр; l – орбитальный

момент относительного движения [4]. Далее рассмотрены случаи образования вторичных тяжелых фрагментов ⁶Li, ⁶He и ⁶Be только в основном состоянии, поэтому l=1. В дальнейшем целесообразно в функции Уиттекера опустить индекс l.

Итак, следуя формализму работы [1], для каналов фрагментации ⁶He + p, ⁶Li + p, ⁶Li + n и ⁶Be + n были рассчитаны функции $W_{\gamma}(2k_{0}r)$, а также гамма-функции $\Gamma(\gamma + l + 1)$, которые являются конструктивным элементом при построении функций Уиттекера. Результаты расчетов и соответствующие численные параметры представлены в табл. 1.

Очевидно, что для нейтронных каналов кулоновский параметр $\gamma = 0$, таким образом эти случаи можно использовать как *контрольные* для оценки точности процедуры численного интегрирования по методу Ромберга, так как результаты можно сравнить непосредственно с аналитическими расчетами. Как следует из табл. 1, отношения

 $W_{\div e \tilde{n} \tilde{e}} / W_{\dot{a} i \, \dot{a} \tilde{e} \dot{e} \dot{o}}$ отличны от единицы в шестом знаке после запятой. Таким образом, достигается достаточно высокая точность при численных расчетах и полученные данные можно считать надежными.

	6 He + p	${}^{6}\text{Li} + p$	${}^{6}\text{Li} + n$		${}^{6}\mathrm{Be}+n$	
	<i>Е</i> _{св} = 10, 251 Мэв	<i>Е</i> _{се} = 5,743 Мэв	$\mathcal{E}_{_{CB}} = 7,524$ Мэв		<i>Е</i> _{се} = 10,812 Мэв	
r	$\gamma=0,0914006$	$\gamma = 0,1831675$	$\gamma = 0$ $\Gamma = 0,999999694$		$\gamma = 0$	
л, фм	$\Gamma = 1,03662930$	$\Gamma = 1,0884806$			$\Gamma = 0,999999694$	
т						
	$W_{ m числ}$	$W_{ m ~числ}$	$W_{ m числ}$	W числ/ W аналит	$W_{ m числ}$	W числ/ W аналит
1	1,21457	1,59469	1,59936	0,999999990086	1,2791	1,0000000767
3	0,18569	0,29993	0,29991	1,0000010051	0,20171	1,0000011758
5	0,04212	0,08872	0,08361	1,0000014592	0,04593	1,0000015981
7	0,01042	0,02923	0,02534	1,0000017067	0,01127	1,0000018216
9	0,00267	0,01008	0,00793	1,0000018625	0,00284	1,00000019599
11	6,94885E-4	0,00356	0,00252	1,0000019695	7,27476E-4	1,0000020539
13	1,8295E-4	0,00128	8,08835E-4	1,0000020477	1,87543E-4	1,0000021220
15	4,84925E-5	4,62109E-4	2,60877E-4	1,00000021072	4,85777E-5	1,00000021736
17	1,29132E-5	1, <u>68414E</u> -4	8,44496E-5	1,00000021540	1,26221E-5	1,00000022140
19	3,45032E-6	6,16874E-5	2,74073E-5	1,00000021919	3,28681E-6	1,0000022465

Таблица 1. Результаты расчетов Г-функций и функций Уиттекера

Рис. 1 иллюстрирует результаты расчетов функций Уиттекера для исследованных каналов.

Рис. 1. Функции Уиттекера: 1 (- - -) – для канала ⁶Li + p, 2 (**•**) – для канала ⁶Li + n, 3 (**•**) – для канала ⁶Be + n, 4 (\Box) – для канала ⁶He + p

Как видно из графиков рис. 1, наблюдаются следующие закономерности радиальной зависимости для функций Уиттекера: чем меньше энергия связи в канале, тем выше значение функции Уиттекера, т.е. функции Уиттекера обратно пропорциональны ε_{na} . Что касается

зависимости от кулоновского параметра γ , то в этом случае наоборот, функции $W_{\gamma}(r)$ прямо пропорциональны величине γ .

Результаты расчетов асимптотических констант C₀ для тех же четырех каналов приведены в табл. 2.

	Кластерный канал				
r, фм	6 He + p	${}^{6}\text{Li} + n$	${}^{6}\text{Li} + p$	$^{6}\text{Be}+n$	
3,9	2,41537	1,90529	2,02361	2,16871	
4	2,48364	1,94143	2,10611	2,24038	
4,1	2,54494	1,97141	2,18539	2,30685	
4,2	2,59893	1,99517	2,26111	2,36777	
4,3	2,64535	2,01265	2,33295	2,42286	
4,4	2,68401	2,02387	2,40065	2,47189	
4,5	2,71479	2,02892	2,46394	2,51466	
4,6	2,73763	2,02791	2,52264	2,55105	
4,7	2,75253	2,02101	2,57658	2,58096	
4,8	2,75957	2,00844	2,62561	2,60438	
4,9	2,75888	1,99043	2,66964	2,6213	
5	2,75066	1,96727	2,7086	2,63181	
7	1,58917	0,96453	2,53134	1,86633	
9	0,48048	0,25228	1,4249	0,79854	

Таблица 2. Результаты расчетов асимптотической константы Со

В соответствии с данными табл. 2 на рис. 2 представлены значения асимптотических констант для некоторого интервала Δr , в котором величина C_0 достаточно медленно меняется с увеличением расстояния.

Рис 2. Асимптотические константы: кривая 1 – канал ⁶He+p; 2 – канал ⁶Be+n; 3 – канал ⁶Li+p; 4 – канал ⁶Li+n. Расчет с осцилляторным параметром $r_0=1,6$ фм

Рис. 3. Зависимость константы C_0 в канале ⁶Li + p от осцилляторного параметра r₀: кривая $1 - r_0 = 2,2 \text{ фм}; 2 - r_0 = 2 \text{ фм}; 3 - r_0 = 1,6 \text{ фм}; 4 - r_0 = 1,4 \text{ фм}$

Рис. За. Зависимость константы C_0 в канале ⁶Li + p от осцилляторного параметра r_0 . Фрагмент рис. 3

При построении радиальных волновых функций в каналах методом проектирования ⁶He + p, ⁶Li + p, ⁶Li + n и ⁶Be + n исходные волновые функции ядер ⁷Li и ⁷Be выбирались в двухкластерных αt - и $\alpha \tau$ -моделях соответственно [5]. Таким образом, при проектировании перестраивается трех-нуклонный кластер (ядро трития t или ³He). В работах [6-8] детально исследован вопрос о роли структурных особенностей волновых функций (ВФ) ядер t и τ . Так, были использованы осцилляторные ВФ, т.е. 3-нуклонные кластеры выбирались симметричными по относительным переменным, но при этом в качестве варьируемого параметра выступает осцилляторный параметр $r_0 = \sqrt{\hbar/m\omega}$, который фактически определяет среднеквадратичный радиус этих систем. Если осцилляторный параметр мал, то кластер сжат, если *r*₀ имеет большее значение, то система расширена, т.е. является диффузной.

Вариация размеров конституэнтного трех-нуклонного кластера несомненно отражается на асимптотике соответствующих радиальных функций. На рисунках 3 и 3а представлены результаты расчетов асимптотических констант в канале ⁶Li + p в зависимости от параметра r_0 в пределах от 1, 4 до 2,2 фм. Хорошо видно, что в целом увеличение значения r_0 приводит к увеличению \tilde{N}_0 . При этом наблюдается также функциональная зависимость $\tilde{N}_0(r, r_0)$, т.е. кривые 1-4 отличаются не на константу.

В табл. 3 приведены значения $\tilde{N}_0(r, r_0)$ для канала ⁶Li + *p*, соответствующие рис. 3 и 3а. Тенденция, которую мы обсудили выше, прослеживается при сравнении значений \tilde{N}_0 по строке. Необходимо отметить, что из рис. За следует, что более мягкая асимптотика соответствует значениям $r_0 = 2,0$ фм и 2,2 фм.

	6 Li + p					
r, фм	$ ilde{N_0}$					
T	<i>r</i> ₀ = 1,4 фм	<i>r</i> ₀ = 1,6 фм	<i>r</i> ₀ = 2,0 фм	<i>r</i> ₀ = 2, 2 фм		
2	0,62343	0,59705	0,48632	0,42451		
3	1,42288	1,45243	1,32099	1,20549		
4	1,84097	2,07404	2,1825	2,10611		
5	1,6101	2,07892	2,63008	2,7086		
6	1,05351	1,60032	2,5412	2,82492		
7	0,56267	1,00385	2,07559	2,53134		
8	0,26691	0,54063	1,47374	2,00703		
9	0,12004	0,26302	0,92562	1,4249		

Таблица 3. Зависимость \tilde{N}_0 от осцилляторного параметра r_0

Рис. 4 Зависимость асимптотической константы \tilde{N}_0 в канале ⁶He + p для различных вариантов параметризации ВФ *свободного* ядра трития [8]

В работах [6,8] приводится также другой вариант описания трехнуклонных виртуальных кластеров: используя данные по упругому рассеянию на ядре ³Н были подобраны параметры соответствующих радиальных ВФ, которые наиболее оптимально воспроизводят экспериментальный формфактор.

Таблица 4.	Зависимость	\tilde{N}_0	от параметризации

	10201 9 1010C					
r,	6 He + p					
фм	Nº 1	Nº 2	Nº 3	<u>№</u> 4		
3,5	2,49079	2,47066	2,60112	2,47164		
3,6	2,59006	2,56853	2,71847	2,5696		
3,7	2,68352	2,66077	2,83069	2,66194		
3,8	2,77085	2,74708	2,93731	2,74834		
3,9	2,8518	2,82725	3,03796	2,82857		
4	2,92616	2,9011	3,13232	2,90247		
4,1	2,99384	2,96855	3,22021	2,96994		
4,2	3,05478	3,02953	3,30148	3,03092		
4,3	3,109	3,08405	3,3761	3,08541		
4,4	3,15656	3,13216	3,44406	3,13347		
4,5	3,19759	3,17394	3,50546	3,17518		
4,6	3,23225	3,20952	3,56042	3,21068		
4,7	3,26074	3,23905	3,60911	3,24013		
4,8	3,28331	3,26272	3,65175	3,26374		
4,9	3,30023	3,28077	3,68856	3,28173		
5	3,31178	3,29343	3,71982	3,29436		
5,1	3,31826	3,30098	3,74578	3,3019		
5,2	3,31999	3,30371	3,76673	3,30464		
5,3	3,31728	3,30193	3,78293	3,30289		
5,4	3,31045	3,29597	3,79466	3,29697		
5,5	3,29982	3,28617	3,80218	3,2872		
5,6	3,28568	3,27286	3,80573	3,2739		
5,7	3,26832	3,25638	3,80556	3,2574		
5,8	3,24801	3,23706	3,80187	3,23802		
5,9	3,22501	3,21523	3,79487	3,21606		
6	3,19955	3,1912	3,78473	3,19182		
7	2,84692	2,88192	3,53743	2,87672		
8	2,37827	2,52362	3,06905	2,51522		

тритиевого кластера

Следует отметить, что в таком подходе размеры тритиевого кластера фиксированы и соответствуют среднеквадратичным размерам *свободного* ядра ³H, которые соответствуют значениям осцилляторного параметра $r_0 \simeq 1, 2-1, 4$ фм.

В то же время варианты параметризации, обозначенные в табл. 4 и рис. 4 как №1-4, отличаются качественно тем, что в отличие от осцилляторной модели кластер ³Н деформирован по относительным переменным между нейтрон-протонной парой \vec{r}_{nv} и дейтроннуклонной координатой \vec{r}_{dN} . Таким образом, возникает дополнительная возможность исследовать вопрос 0 параметрах виртуальных кластеров в поле компактного сильно связанного αчастичного остова И попытаться предложить экспериментальную проверку гипотезы о деформации кластеров в связанном состоянии.

контексте R таком были исследованы ранее спектроскопические каналов характеристики виртуального распада ⁶He + p, ⁶Li + p, ⁶Li + n и ⁶Be + n, а также их динамические характеристики на примере процессов фоторасщепления и радиационного захвата [3,6]. Однако, сравнение имеющимися с экспериментальными данными по этим

процессам пока не позволяют сделать однозначный выбор в пользу того или иного (сжатие или растяжение) характера деформации виртуального кластера.

Итак, рис. 4 и соответствующая ему табл. 4 иллюстрируют зависимость асимптотической константы \tilde{N}_0 в канале ⁶He+*p* в случае использования различных вариантов параметризации ВФ свободного трития. Сравнение с данными табл. 1 (осцилляторная модель) показывает, что абсолютные значения \tilde{N}_0 несколько отличаются от данных табл. 4. В этой связи актуально обсудить имеющиеся экспериментальные данные и результаты теоретических расчетов асимптотических констант в *бинарных* кластерных моделях – в настоящее время таких данных очень мало.

исследование асимптотических констант в однонуклонных каналах для ядер ⁷Li и ⁷Be.

Литература

5

1. Афанасьева Н.В., Буркова Н.А., Жаксыбекова К.А., Кабытаев Ч.З. Асимптотика мультикластерных волновых функций в бинарных сильно связанных каналах. 1. Элементы формализма // Вестник КазНУ. Сер. физ. 2008. № 2(26). С. 83-86.

2. Буркова Н.А., Жаксыбекова К.А., Жусупов М.А. Потенциальная теория кластерного фоторасщепления легких ядер // ЭЧАЯ. 2005. Т. 36, вып. 4. С. 801-868.

3. Burkova N.A., Zhaksybekova K.A., Zhusupov M.A. One-nucleon spectroscopy of light nuclei // Phys. of Part. and Nucl. 2009. Vol. 40, No. 2. P. 162-205.

4. Arfken G. Mathematical methods for Physicists. – NY and London: Academic press, 1967. 655 p.

5. Дубовиченко С.Б. Свойства легких атомных ядер в потенциальной кластерной модели. – Алматы: Данекер, 2004. 247 с.

6. Буркова Н.А., Жаксыбекова К.А Спектроскопия каналов ⁷Li → ⁶Li + n и ⁷Be → ⁶Li + p в кластерных моделях // Вестник КазНУ. Сер. физ. 2006. № 2(22). С. 14-17.

7. Burkova N.A., Zhaksybekova K.A., Zhusupov M.A., Afanas'eva N.V. Review on the onenucleon $A \rightarrow A-1+N$ fragmentation of nuclei with A=7 // Вестник КазНУ. Сер. физ. 2007. № 1(23). С. 178-180.

8. Жаксыбекова К.А Сравнительный анализ изобар-аналоговых и конфигураций в *αt* - модели ядра ⁷Li // Вестник КазНУ. Сер. физ. 2005. № 1(19). С. 158-164.

БИНАРЛЫ КҮШТІ БАЙЛАНЫСҚАН КАНАЛДАРДАҒЫ МУЛЬТИКЛАСТЕРЛІ ТОЛҚЫНДЫҚ ФУНКЦИЯЛАРДЫҢ АСИМПТОТИКАСЫ. 2. ЕСЕПТЕУ НӘТИЖЕЛЕРІ

Н.В. Афанасьева, Н.А. Буркова, К.А. Жақсыбекова, Ч.З. Қабытаев

 6 He + p, 6 Li + p, 6 Li + n, 6 Be + n бинарлы изобар-аналогты кластерлік каналдардағы радиалды толқындық функциялардың асимптотикалық тұрақтыларын есептеу нәтижелері көрсетілген.

ASYMPTOTICS OF THE MULTICLUSTER WAVE FUNCTIONS IN THE BINAR STRONG BIND CHANNELS. 2. RESULTS OF CACULATIONS

N.V. Afanas'eva, N.A. Burkova, K.A. Zhaksybekova, Ch.Z. Kabytaev

The results of calculation for the asymptotic constants of the radial wave functions in the binary isobar-analogous ${}^{6}\text{He} + p$, ${}^{6}\text{Li} + p$, ${}^{6}\text{Li} + n$, ${}^{6}\text{Be} + n$ cluster channels are present.