ТЕОРЕТИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО ИМПУЛЬСНЫМ РАСПРЕДЕЛЕНИЯМ ПРОТОНОВ В КАНАЛЕ ⁷ Li \rightarrow ⁶ He+p

Н.В. Афанасьева, Н.А. Буркова, К.А. Жаксыбекова, Д.Р. Сафиулин

Казахский национальный университет им. аль-Фараби, НИИЭТФ, г. Алматы

В рамках αnn -представления основного состояния ядра ⁶He(0⁺,1) и первого возбужденного 2⁺,1 рассчитаны импульсные распределения протонов в канале фрагментации ⁷Li \rightarrow ⁶He+p. Приводится сравнение с имеющимися теоретическими расчетами и экспериментальными данными по процессу ⁷Li(e,e'p)⁶He.

Ядро ⁷Li в настоящее время может быть признано одним из самых исследованных объектов и с экспериментальной и с теоретической точки зрения.

Такой пристальный интерес связан с тем, что ⁷Li входит в цепочку синтеза элементов во Вселенной, но это уже состоявшаяся ситуация, которая просто требует соответствующей интерпретации. Вопрос в том, какую роль играют сегодня накопленные данные для последующих перспективных исследований.

Суммируя достигнутое в настоящее время понимание информации по этому ядру можно констатировать, что его геометрическая и электромагнитная структура наиболее адекватно отражаются в рамках *αt* -кластерного представления.

Многочисленные расчеты статических (зарядовый и массовый радиусы; дипольный квадрупольный и октупольный моменты и др.) и динамических характеристик (зарядовые упругие и неупругие формфакторы, процессы фоторасщепления и радиационного захвата в αt -канале, квазиупругое рассеяние адронов и мезонов и т.д.) в рамках сложных микроскопических моделей, например метода резонирующих групп (МРГ) [1-3] или метода стохастического квантования (МСК) [4] показывают, что доминирующей кластерной конфигурацией является именно αt .

Как это ни удивительно, но ядро ⁷Li оказалось сегодня более простой системой, чем дейтрон. Однако это касается только канала фрагментации ⁷Li $\rightarrow \alpha$ +t. В случае распадов в каналы, которые связаны с разрушением (или "перестройкой") виртуального тритиевого кластера, например:

(a) ⁷Li{ α t} \rightarrow ⁶Li+n, (b) ⁷Li{ α t} \rightarrow ⁶He+p, (c) ⁷Li{ α t} \rightarrow ⁵He+d,

ситуация с одной стороны, существенно усложняется, а с другой – открываются новые возможности для исследования спектроскопии этих каналов, особенностей динамических и статических характеристик конституэнтного кластера t, которые, в принципе, могут отличаться от соответствующих характеристик свободного ядра трития ³ H.

Интерес к процессам (*a*)-(*c*) связан с тем, что они соответствуют, так называемому, *динамическому* типу кластеризации [5], изучение которого требует как новых теоретических подходов, так и поисков возможностей экспериментальной проверки развиваемой концепции.

В настоящей работе именно в таком контексте детально обсуждаются результаты измерений процесса квазиупругого выбивания протонов $^{7}\text{Li}(e,e'p)^{6}\text{He}$ на установке NIKHEF – это самые новые, последние экспериментальные данные [6,7].

Следует отметить, что с математической точки зрения достигнут реальный прогресс в решении задач по динамической кластеризации. Ранее в работах [8,9] был рассмотрен

математический метод построения волновых функций (ВФ) относительного движения в каналах фрагментации, в которых исходная кластерная конфигурация не совпадает с типом кластеризации в конечном канале – это метод проектирования.

Для канала (b) были рассчитаны протонные спектроскопические факторы $S_{0^+,1}$ и $S_{2^+,1}$ для переходов на основное и первое возбужденное состояние ядра ⁶ Не. Рассмотрены следующие варианты конструкции виртуального тритиевого кластера ³ Н: трансляционно инвариантная модель оболочек (ТИМО), которая соответствует симметричной ВФ по относительным координатам и имеет свободно варьируемый осцилляторный параметр r_0 , а также "реалистические" ВФ, которые представляют собой вариационные функции, параметры которых подобраны так, чтобы воспроизводился наблюдаемый формфактор ядра трития ³ Н.

В случае ТИМО размеры кластера ³Н можно варьировать с помощью параметра r_0 , симулируя "диффузный" или "сжатый" кластер. Во втором случае – среднеквадратичные размеры ³Н фиксированы и соответствуют параметрам свободного трития.

Полученные результаты по протонным спектроскопическим *S* -факторам сравниваются в таблице 1 с расчетами модели оболочек (МО) [10] и вариационного метода Монте Карло (variational Monte Carlo – VMC) [6,7].

	^{7}L	$i \rightarrow^6 Li + n$,	$^{7}\text{Li} \rightarrow^{6}\text{He+p}$		
j^{π}, T	0+,1			2+,1	
A=6	⁶ Li	⁶ He	⁶ Li	⁶ He	
<i>Е</i> _{<i>x</i>} , МэВ	3,56	g.s.	5,37	1,797	
S ^{theor} [10]	0,285	0,571	0,208	0,416	
S ^{theor} [11]		0,56		0,34	
S ^{theor} [12]	0,24	0,48 *	0,14	0,28 *	
$S^{exp.}$ [13]	0,31 *	0,62	0,165(0,16) *	0,37 (0,32)	
S ^{exp.} [7] NIKHEF	0,21 *	0,42(4)	0,08 *	0,16(2)	
S^{\exp} [14]	0,3*	0,6	0,2*	0,4	
S_{VMC}^{theor} [6,7]		0,41		0,19	
$S^{theor}, r_0 = 1,3$	0,224	0,461	0,146	0,291	
$S^{theor}, r_0 = 1,67$	0,286	0,581	0,168	0,334	
$S^{theor}, r_0 = 2,36$	0,228	0,456	0,111	0,219	

Таблица 1. Спектроскопические нейтронные и протонные факторы в изобар-аналоговых каналах ${}^{7}Li_{e.s.} \rightarrow {}^{6}Li+n$ и ${}^{6}He+p$

*- экспериментальные данные, пересчитанные с учетом отношения $S_p / S_n = 2$

В таблице 1 также представлены экспериментальные данные по нейтронным Sфакторам, которые мы пересчитали в протонные спектроскопические факторы, используя безмодельное соотношение $S_n / S_n = 2$, полученное и обоснованное в [9].

Сравнение экспериментальных *S*-факторов показывает, что данные работ [13] и [14] более менее согласуются между собой, но противоречат данным NIKHEF [7]. К сожалению, авторы работы [7] не приводят анализ такого расхождения. С нашей точки зрения причиной может быть различие методик извлечения *S*-факторов из экспериментальных сечений.

Модельные расчеты также отличаются между собой. В то же время из таблицы 1 видно, что в настоящих расчетах можно добиться в целом согласования с теми или иными данными за счет вариации параметра r_0 .

Для устранения возникшей неопределенности мы предлагаем привлечь к обсуждению данные по импульсным распределениям протонов, которые извлекаются из сечений процесса 7 Li(*e*,*e'p*)⁶He. Формально, характеристика $\rho(p_m)$ представляет собой Фурье-образ координатной ВФ относительного движения

$$\rho(\vec{p}_m) = \left| \int e^{i\vec{p}_m\vec{r}} \left\langle {}^{6}\mathrm{He} \left| \alpha(\vec{r}) \right|^{7} \mathrm{Li} \right\rangle d\vec{r} \right|^{2}.$$

Здесь \vec{p}_m , так называемый, *missing momentum* – недостающий момент импульса, который по абсолютной величине равен импульсу отдачи и имеет противоположное направление, т.е. $\vec{p}_m = -\vec{p}_B$.

На рис. 1 представлены данные по импульсным распределениям, рассчитанные в потенциальной кластерной модели (ПКМ).

Рис. 1. Импульсные распределения протонов в ядре ⁷Li при вариации среднеквадратичных параметров конституэнтного виртуального тритиевого кластера ³H

Как видно из рис. 1, вариация осцилляторного параметра r_0 отражается на такой характеристике импульсных распределений как *ширина на полувысоте* $\Gamma_{j^{\pi},T}$, МэВ/с. При этом очевидно, что соотношение величин r_0 и p_m находятся в прямом соответствии с принципом неопределенности Гейзенберга.

Следует также отметить, что отношение $\rho(p_m)$ для переходов на основное состояние ядра ⁶He(0⁺,1) и первое возбужденное 2⁺,1 в среднем соответствует отношению спектроскопических факторов $S_{0^{+}1}/S_{2^{+}1} \sim 1,6$.

В таблице 2 приведены сводные данные по спектроскопическим факторам и ширинам импульсных распределений в сравнении с экспериментальными данными NIKHEF и

расчетами VMC. Как следует из таблицы, при значении $r_0=1,8$ фм ширина на полувысоте воспроизводится абсолютно точно. При этом по-прежнему имеется отличие в *S*-факторах.

	r ₀ =1,6 фм	го=1,8 фм	r ₀ =2,0 фм	r₀=2,4 фм	ПКМ,	VMC,	NIKHEF,
					$r_0=1,8$	теор.	эксп.
<i>S</i> _{0⁺,1}	0,571	0,583	0,557	0,443	0,48	0,41	0,42(4)
Γ _{0⁺,1}	119	110	106	95	-	110	110
<i>S</i> _{2⁺,1}	0,334	0,326	0,296	0,210	0,28	0,18	0,16(2)
Γ _{2⁺,1}	120	111	103	94	-	111	111

Таблица 2. Спектроскопические факторы $S_{j^{\pi},T}$ и ширины импульсных распределений $\Gamma_{j^{\pi},T}$

На рис. 2 представлено сравнение настоящих расчетов и расчетов VMC по импульсным распределениям. Для общности также приведены результаты расчетов, выполненные в приближении усредненного поля (MFT – mean field theory). Для данных, полученных в модели VMC, вертикальными линиями отмечен разброс численных значений, обусловленный процедурой варьирования методом случайных чисел.

Рис. 2. Расчет импульсных распределений *ρ*(p_m): Ο – VMC [6, 7]; пунктир – MFT [6]; сплошная кривая – настоящая работа, r₀=1,8 фм

Интервал импульсов p_m , который целесообразно обсуждать, 0÷400 МэВ/с. Очевидно, что наши расчеты (при г₀=1,8 фм) и VMC вполне согласуются в этом диапазоне энергий возбуждения. Расчеты в рамках MFT [6] содержат дифракционный минимум и, таким образом, при значениях $p_m > 200$ МэВ/с заметно расходятся с ПКМ и VMC расчетами. Формальная констатация совпадений в расчетах по импульсным распределениям не проясняет вопроса об уровне достоверности всех представленных моделей. Преимущество нашего подхода состоит в том, что можно отследить все использованные приближения. При этом, как видно из рис. 2, теоритический микроскопический расчет VMC является существенно неоднозначным при больших значениях p_m .

Для общности приведем сравнение экспериментальных данных по процессу 7 Li(*e*,*e*'*p*)⁶He и настоящих расчетов – рис. 3.

Рис. 3. Сравнение настоящих расчетов с экспериментальными данными NIKHEF [7]

Рис. З наглядно иллюстрирует, что в рамках потенциальной кластерной модели можно воспроизвести имеющиеся экспериментальные данные по квазиупругому выбиванию протонов – ${}^{7}\text{Li}(e,e'p)^{6}\text{He}$ [7]. Однако вопрос по спектроскопическим факторам остается открытым. Отметим также, что анализ данных таблицы 2 в совокупности с данными рис. З показывает, что виртуальный кластер ${}^{3}\text{H}$ в ядре ${}^{7}\text{Li}$ должен иметь более диффузные размеры (r_{0} =1,8 фм) по сравнению со свободным ядром трития ($r_{0} \sim 1,5$ -1,6 фм).

В заключение заметим, что для устранения обозначенных выше неопределенностей представляется актуальным продолжение экспериментального исследования процесса 7 Li(*e*,*e'p*)⁶He с использованием поляризованных электронов и, например, мишени 7 Li.

Литература

1. Kaneko T. et al. Microscopic theory of the ${}^{3}H+\alpha$ system with the multi channel resonating group method // Phys. Rev. C. 1986. Vol. 34, N 3. P. 771-779.

2. Kajino T. et al. Electromagnetic properties of 7 Li and 7 Be in a cluster model // Nucl. Phys. A. 1984. Vol. 413. P. 323-352.

3.Fujiwara Y., Tang Y.C. Multiconfiguration resonating group theory of the seven-nucleon system with realistic cluster wave functions // Phys. Rev. C. 1985. Vol. 31, N 2. P. 324-359.

4. Suzuki Ya., Varga K. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems // Lecture notes in Physics. 1998. 310 p.

5. Чувильский Ю.М., Рыжих Г.Г. Спектроскопический фактор канала ⁶Li →τ+t в α+2N - модели с антисимметризацией // Изв. РАН. Сер. физ. 1992. Т.56, № 1. С. 112-117.

6. Lapicas L., Wesseling J., Wiringa R.B. Nuclear structure studies with the $^{7}\text{Li}(e,e'p)^{6}\text{He}$ reaction // Phys. Rev. Lett. 1999. V. 82, No. 22. P. 4404-4407.

7. Lapicas L., Wesseling J., Wiringa R.B. Correlations in the ground state wave function of ⁷Li // Nucl. Phys. A. 2000. V. 663&664. P. 377c-380c.

8. Буркова Н.А., Жаксыбекова К.А., Жусупов М.А. Потенциальная теория кластерного фоторасщепления легких ядер // ЭЧАЯ. 2005. Т. 36, вып. 4. С. 801-868.

9. Burkova N.A., Zhaksybekova K.A., Zhusupov M.A. One-nucleon spectroscopy of light nuclei // Phys. of Part. and Nucl. 2009. Vol. 40, No. 2. P. 162-205.

10. Бояркина А.Н. Структура ядер 1р-оболочки. М: МГУ, 1973. 62 с.

11. Barker F.C. Intermediate coupling shell-model calculations for light nuclei // Nucl. Phys. 1966. V. 83. P. 418-448.

12. Ajzenberg-Selove F. Energy levels of light nuclei A=5-10 // Nucl. Phys. A. 1988. V. 490. P. 1-225.

13. Brady F.P., King N.S.P., Bonner B.E. et al. ${}^{6}Li(n,d)^{5}He$ and ${}^{7}Li(n,d)^{6}He$ with 56.3 MeV neutrons // Phys. Rev. C. 1977. V.16. No1. P. 31-41.

14. Сакута С.Б., Новацкий Б.Г., Степанов Д.Н. и др. Экспериментальное исследование высоковозбужденных состояний ядер ^{5,6} Не и ^{5,6} Li в реакциях однонуклонного подхвата (⁶Li, ⁷Be) и (⁶Li, ⁷Li) // ЯФ. 2002. Т. 65, №10. С. 1819-1825.

⁷Li →⁶ He+p КАНАЛЫНДАҒЫ ПРОТОНДАРДЫҢ ИМПУЛЬСТІК ТАРАЛУЫНЫҢ ЭКСПЕРИМЕНТТІК МӘНДЕРІН ТЕОРИЯЛЫҚ ИНТЕРПРЕТАЦИЯЛАУ

Н.В. Афанасьева, Н.А. Буркова, К.А. Жақсыбекова, Д.Р. Сафиулин

⁶ He(0⁺,1) ядросының негізгі күйінің және бірінші 2⁺,1 қозған күйінің *сапп* жобасы негізінде ⁷Li \rightarrow ⁶ He+p фрагментация каналындағы протондардың импульсі үлестірілулері есептелінді. Бұған дейінгі белгілі теориялық есептеулермен және ⁷Li(e,e'p)⁶He процесі бойынша NIKNEF эксперименттік мәндермен салыстыру келтірілген.

THEORY ON THE EXPERIMENTAL DATA FOR THE MOMENTUM PROTON DISTIBUTIONS IN 7 Li \rightarrow^{6} He+p CHANNEL

N.V. Afanas'eva, N.A.Burkova, K.A. Zhaksybekova, D.R. Safiulin

Within the αnn -model for the ground state of ${}^{6}\text{He}(0^{+},1)$ nuclei and first excited one 2⁺, 1 the proton momentum distributions have been calculated in ${}^{7}\text{Li} \rightarrow {}^{6}\text{He+p}$ fragmentation channel. A comparison with available theoretic calculations as well experimental data on the process ${}^{7}\text{Li}(e,e'p){}^{6}\text{He}$ is given.