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MCNP6 CALCULATION OF NEUTRON FLUX MAP IN THE HTTR DURING NORMAL OPERATION

Detailed neutron flux distribution is important to understand the neutronic behavior during operation as
well as to precise the core optimization and safety analysis of a reactor. In the literature, no calculations have
been performed to show the detailed neutron flux map for the high temperature engineering test reactor
(HTTR) because of the limitation of the old neutronic codes and the low performance of the computing system.
HTTR is a prismatic type reactor, helium gas-cooled, and graphite-moderated, providing 30 MWth power and
up to 950 °C outlet temperature. The present work deals with MCNP6 Monte-Carlo calculation to determine
the detailed neutron flux map in the HTTR during normal operation. At first, the calculation of neutron flux at
several positions in the reactor was validated by comparing the corresponding reaction rate between the
calculation and measurement. After that detailed neutron flux with the small cells of 1cmx1cmx10cm was
obtained for the entire reactor core using the fmesh tally of MCNP6 code.
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MCNPG6 agijcimeH KanbinTbl }KyMbic KesiHae MTCP-Fbl HEMTPOHAAP afblHbIHbIH, KAPTACbIH ecenTey

HelTpoHAap afblHbIHbIH erKeN-TerKeni Tapanybl KYMbIC Ke3iHAe HEUTPOHAAPAbIH, SPEKETIH TYCiHY YLIiH,
COHAaM-aK, SAAPOHbI A2/ OHTAMNAHAbIPY JKSHE peakTop Kayincisgirih - Tangay YWiH - MaHbI3Aabl.
HelTpoHAbl - GU3MKaNbIK eCKi KOATapbIHbIH, LIEKTEYNEPiHE KIHEe ecenTey KYWEeCiHiH Hawap eHimainiriHe
HalinaHbICTbl XKOFapbl TeMnepaTypasblK CbiHaK peakTopbl (FKTCP) yliH erken-Terkenni HeMTPOH afbiHbIHbIH,
KapTacblH KepceTy YLWiH ocblifaH AeliH aaebueTTeple ellKkaHaal ecenTeynep KyprisinmereH. WTCP
NPU3MaTUKaNbIK TUNTI PEaKTop, reNnii rasbiMeH CanKblHAATbIAFAH KaHe rpaduTneH moaepaumnsnaHsaH, 30
MBT KyaT neH 950 °C wbIfbiC TeMnepaTypacbiH KamTamacbl3 eTedi. by XymMbIC KanbiNTbl *KYMbIC Ke3iHae
TCP - gafbl HEMTPOH afblHbIHbIH, EMXKel - TerKenni KapTacbiH aHbiKTay ywiH MoHTe-Kapnio MCNP6 (Monte
Carlo N - Particle Transport Code 6) ecebiHe apHanfaH. bipiHlWiaeH, peakTopablH, OipHelle HyKTenepiHAaeri
HEeMTPOHAApP afblHbIHbIH ecebi ecenTey MeH e/lley apacbiHAafbl COMKEC peakLMa KblNAaMabIFbIH CanbICTbIpy
apKkblNbl pactanabl. OcblgaH KeiH MCNP 6 fmesh tally Koabl apKbiibl peaktopablH, 6apabiK e3eri yiliH
1cmx 1 cm x 10 cm WafFblH YALWbIKTapbl 6ap erken - Terkenni HEMTPOH afblHbl anblHAbI.

TyiiH ceznep: KTCP, XTIP, MCNP6, HelTpoH afbiHbl, fmesh.
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PacueT KapTbl NOTOKa HEUTPOHOB B BTTP npy HOpManbHOM aKcnayaTaumMm metogom MCNP6
MoapobHoe pacnpedeneHne NOTOKa HEWTPOHOB BaXKHO 414 MOHMMAHWA NOBEAEHMA HENTPOHOB BO
Bpema paboTbl, @ TaKKe A58 TOYHOM ONTUMMU3ALIMKM aKTMBHOM 30HbI M aHann3a 6e3onacHOCTM peakTopa. B

iUTepaType He NpPoBOAMAMCL pacyeTbl A1A OTobpaxKeHus noapoObHOM KapTbl MOTOKA HEWTPOHOB A
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BbICOKOTEMMNEPATYPHOro TecToBOro peaktopa (BTTP) M3-3a OorpaHUYeHUIn CTapbiX HEMTPOHHO - GU3NYECKMX
KOZOB M HW3KOM MPOU3BOAUTEILHOCTU BbIYMCANTENBHON cucTembl. BTTP npeactasnseTr cobol peakTop
NpPM3MaTUYecKoro TWNa C TeAMEBbIM  [a30BbIM  OXAAXAEHMEM U rpadUTOBbIM  3aMedIUTENEM,
obecneynBatowmnini molwHocts 30 MBTT 1 TemnepaTypy Ha Bbixoge A0 950 °C. HacTosauwasa paboTta nocBALleHa
pacuety metogom MoHTe-Kapno MCNP6 (Monte Carlo N - Particle Transport Code 6) ana onpeaeneHus
AEeTaNbHOM KapTbl NOTOKA HENTPOHOB B BTTP npu HopmanbHol paboTte. CHavana pacyeT noToKa HEMTPOHOB B
HECKOJIbKMX TOYKax peakTopa Obln MOATBEP:KAEH NMyTemM CPaBHEHMA COOTBETCTBYIOLLEN CKOPOCTU peaKumm
MEXAY PacYeToM 1 M3amepeHnem. Mocne aToro Hamm 6bi1 NoydeH NoAPOBHbLIN NOTOK HEMTPOHOB C MENIKUMMU
Ayerikamm 1 cm x 1 cm x 10cM Ans BCeM aKTMBHOW 30HbI peakTopa € mcrnonb3oBaHuem fmesh tally koaa

MCNP6.

Kniouesble cnoea: BTTP, BTIP, MCNP6, HEMTPOHHbIM NOTOK, fmesh.

Introduction

High temperature engineering test reactor
(HTTR) is the first Japanese high-temperature gas-
cooled reactor (HTGR) located in the Oarai Research
and Development Institute of Japan Atomic Energy
Agency (JAEA) [1-6]. HTTR is a prismatic type
reactor, helium gas-cooled, and graphite-moderated,
providing 30 MWth power and up to 950°C outlet
temperature.

Many neutronic calculations for the HTTR have
been performed to show various neutronic properties
of the reactor such as neutron flux, multiplication
factor, excess reactivity, temperature reactivity
coefficient, shutdown margin, etc. [7-14]. However,
the detailed neutron flux map was not be obtained in
previous studies because of the old nuclear codes as
well as the low computing performance. The detailed
neutron flux distribution would help to calculate
detailed power distribution and detailed depletion of
the fuel and therefore precise the core optimization
and safety analysis. Therefore, the purpose of this
study is to provide the neutron flux map of the HTTR
during normal operation using the Monte-Carlo
MCNP6 code [15]. In order to obtain the detailed
neutron flux map, the fmesh tally divided the core
into about 16 million rectangular cells with
dimensions of lcmxlecmx10cm in X, y, and z
directions, respectively.

Methodology

The overview of HTTR is shown in Figure 1.
The HTTR is a prismatic type of high temperature gas
cooled reactor (HTGR) with thermal power of 30MW
and outlet temperature of 850/9500C. There are 150
hexagonal fuel blocks in the core region stacking in
30 fuel columns. Each fuel block contains 31 or 33
fuel rods and there are 14 fuel compacts in each fuel
rod. The fuel compact comprises approximately
13,000 coated fuel particles in an annular graphite
matrix [16]. More detailed fuel design of the HTTR
can be seen in Figure 2.

Figure 1 — Overview of HTTR

The MCNP6 model for the HTTR has been
developed as much detail as possible. This HTTR
model with MCNP6 has been validated in previous
studies [12-14]. The neutronic calculation was carried
out with ENDF/B.VII-1 nuclear library [17]. The
number of neutrons per cycle and the number of
active cycles were 20,000 and 1000 (excluding 50
skip cycles), respectively.

It is of interest that MCNP6 code provides the
fmesh tally, which allows users to achieve the tallies
in a very fine mesh [18-20]. There are two types of
mesh that could be used with fmesh tally including
Cartesian (XYZ) and Cylindrical (RZT) mesh. The
geometries of the XYZ and RZT meshes are shown in
Figure 3. This study chooses the XYZ meshes
because of the convenience during post-plotting.
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Results

In the first step, the neutron flux calculation was
verified by comparing the calculated neutron flux
with the measurement neutron flux at zero power
operation. The reactor operated at almost zero power
in the experiment so that it is difficult to determine
the absolute value of neutron flux. Therefore, the
equivalent reaction rate was used for the comparison.
Figure 4 shows that the calculated reaction rate
appears to be in good agreement with the measured
value.
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Figure 4 — Verification of reaction rate at zero
power operation

After verifying the neutron flux calculation
method, the detailed neutron flux map was calculated
using the fmesh tally. With 20x106 neutron history,
the neutron flux could be achieved with a relative
error of about 1%. The thermal and fast neutron fluxes
in the radial direction are shown in Figures 5 and 6,
respectively. It can be seen in Figure 5 that the highest
thermal neutron flux appears at the center control rod
block, followed by at the replaceable blocks at side
reflector. The depth gaps of thermal neutron flux
caused by control rods and burnable poison rods are
also clearly seen in Figure 5.

According to Fig. 6, the fast neutron flux is only
significant in the fuel region. It decreases remarkably
at the side reflector region because of the good
moderation of graphite moderator. In contrast to
thermal neutrons, which are mostly appeared at non-
fuel blocks, the fast neutrons are mainly distributed in
the fuel blocks because the fission neutrons are fast
neutrons.

Figures 7 and 8 show the thermal and fast
neutron flux in the axial direction at center cross-
section of the core. It can be seen in Figure 7 that the
thermal flux deceases significantly at the top reflector
region because of the existence of control rods here.
In Figure 8, the fast flux is also dominant in the fuel
region as same as in the radial direction.
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future core optimization and safety analysis of the

HTTR.

This study calculated and constructed the
detailed thermal/fast neutron flux map for the HTTR
using MCNP6 code. The flux could be obtained in
detail even for every fuel rod. This result is useful for
understanding the neutronic behavior as well as for
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