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EXPLORING OPEN STAR CLUSTER MEMBERSHIPS WITH N-BODY SIMULATIONS
AND MACHINE LEARNING

This work explores the application of supervised machine learning algorithms on N-body simulations to
analyze the membership of open star clusters. The simulations used in this study are based on the Plummer
model, clusters formed with constant star-formation efficiency (SFE) per free-fall time. We use simulations
with different SFE and initial random realization. The random forest model was trained using simulations
based on a 15% SFE over a time period of 20-100 million years. Subsequently, the model was tested on other
N-body simulations with SFEs ranging from 17% to 25%, demonstrating consistently high classification
accuracy throughout the dynamic evolution of the tested simulations. The model successfully identified
cluster members with minimal deviations despite variations in SFE. Additionally, the algorithm maintained
robustness against noise and initial conditions. Most of the errors observed in the model were false positives
(FP), often located within a 2 Jacobi radius, suggesting gravitational binding to the cluster's center. This
framework and learning strategy exhibit effectiveness and hold promise for further application in analyzing
mock observations obtained from N-body simulations. Future work will focus on extending this method to
more realistic observational scenarios.
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N-geHeHi Mogenbaey XoHe MaLLMHANbIK OKbITY apKblibl
WaLLbIPaHKbI KYA4bI34bIK LWOFbIPAapFa MYLENiKTI 3epTTey

By KyMbIC WalbIpaHKbl KYA4bI3AbIK WOFbIPFA MYLWeNiKTi Tangay ywiH N-geHeni mogenoaeynepre
MallMHaNbIK OKbITY aNropuUTMAEpiH KonaaHyabsl 3epTrenai. Ocbl 3epTTeyae nanaanaHbiAfaH CMMyAsUMsaNap
WOFbIpAbIH, B6ip epKiH Ky/nay yakbiTbiHAa KYAAbI3 Ty3iny Tuimainiri (MTT) TypakTel 6onatbiH Mnammep
mozeniHe HerizgenreH. bis apTypni KTT meH 6acTankpl Ke3gencoK TapanynapMeH epeKleseHeTiH
cumynauusnapabl  KongaHambls. PaHgom  ®opect (Kesgelicok opmaH) mogdeni 20-100 MAH  Xbin
apanbifblHaarbl KTT 15%-fa HerizaenreH cumynaumasa okbiTbinapl. KetiHHeH on KTT 17%-aaH 25%-ra aeniuri
backa N-geHe cumynaumanapbiHa CbiHaNapl, XKaHe by MoAenb CbiHaNfFaH CUMYNAUMANAPAbIH ANHAMUKANbIK,
3BOMOLMACKI BapbICbiHAA ADMEKTI XKOoFapbl XKiKTey AdA4iriH KepceTTi. Modenb Kynabl3aapasiH nanga 6oy
TUIMAINITIHIH, ©3repyiHe KapamacTaH KnacTep mylenepiH MUHUMAAAbl aybITKYNapMeH COTTi aHbIKTal angbl.
CoHbIMEH KaTap, anropuTM LWybll MeH BacTanKpl WapTTapdblH, e3repiciHe KaTbICTbl TYPaKTbIbIKFbIH CaKTan
Kanabl. Moaenbae 6alikanraH KaTenikTepAid Kenuwiniri »kanfaH nosmtueTep (FP) 6onabl, onap kebiHece 2
AKobW paamycbiHAa OpHanacadbl, 6yN WOFbIPAbIH, LEHTPIMEH rpaBUTaUMANbIK HBalinaHbiCybiHbIH, cebebiHeH
nen 6osmkaHaabl. Ocbl Herizgemenik bafmapnama MeH OKbITy CTpaTernsachbl TMiMAI eKkeH aHe N-aeHe
CUMYNAUMSANAPbIH Kopaman BaKkbliaynapblH Tangayaa ofaH api KondaHbicka me 6onaasl. bonawakTta ocbl
*KYMbICTafbl 9iCTi HEFYP/IbIM HaKTbl BaKblNay CLEeHapuiinepiHe aeniH KeHenTyre barbiTTanadabl.

TyliH ce3aep: *KyNabi3abiK WoFbipaap, N-aAeHeHi Mogenbaey,MalliMHabiK OKbITY, 6aKbliaHaTbIH OKbITY.
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UccnhepoBaHWe YNeHCTBa B pacceAHHbIX 38€34HbIX CKONNEHMAX
C NOMOLLbIO MogennpoBaHua N-Ten U MalWnHHOro O6V‘-I€‘HMFI

B paHHol paboTe npuBedeHbl pesyabTaTbl UCCAEA0BAHUA MO NMPUMEHEHWUIO aATOPUTMOB MALLIMHHOMO
0By4YEHMA C yunTenem Ha cumynaumax N-Ten Ana aHanM3a YNeHCTBa B PaCCeAHHbIX 3BE3AHbIX CKOMIEHUAX.
MozaenvnpoBaHue, NCNOMb30BaHHOE B JaHHOM UCCAeA0BaHNKU, OCHOBAHO Ha Moaenu Naammepa, a Knactepsi
chopMMpPOBaHbI C MOCTOAHHOMN 3hPEKTUBHOCTbLIO 3Be34006pa3oBaHMsA (193) Ha Bpemsa cBOBOAHOTO NageHus.
Kaxkaas cumynsaums otamdaetca 133 1 HavyaibHOW ciydaliHon peannsaunen. Mogens caydaiHoro neca bbinia
oby4yeHa ¢ MCMONb30BaHMEM CUMYAALMIK Ha ocHoBe 3 bEKTMBHOCTM 0Opa3oBaHMA 3Be3 Ha ypoBHe 15% 3a
nepuos spemeHn ot 20 4o 100 MUANMOHOB IET. 3aTEM MOE/b Oblfia NPOTECTMPOBAHA Ha APYTrMX CUMYAALMUAX
N-Ten c apdekTnBHOCTAMM 0bpasoBaHma 38e3a oT 17% [0 25%, 1 NoKasaHa NOCTOAHHAA BbICOKAA TOYHOCTb
KNacCUOUKALMM Ha MPOTSHEHUN AMHAMUYECKOW 3BOJIOLMKM MPOTECTUPOBAHHbLIX CUMyauMin. Mogenb
ycrewHo onpeaenmna 3ee3/bl, OTHOCAWMECA K KNacTepy C MUHUMANbHBIMW OTKIOHEHUAMW, HECMOTPS Ha
Bapuaumm B apdeKTUBHOCTM 3Be34000pa3oBaHmA. Kpome Toro, anroputm COXpPaHaa YCTOMYMBOCTb K LYMY U
HaYa/IbHbIM YCN0BMAM. BONBLIMHCTBO OWNHOK, 0BHAPYKEHHbIe B MOAENM, BbIIN NOKHBIMKU CPabaTbiBaHMAMM
(FP) yacto HaxogAwMMKUCA B npeaenax AByX paauvycoB FAKOOW, UTO YKasblBaeT Ha rpaBUTaALMOHHYIO
MPUBSA3AHHOCTb K LIEHTPY CKonaeHuA. MoKasaHbl 3GGEKTUBHOCTb AaHHOM CTPYKTYPbl U CTPaTernm obydyeHms u
BO3MOXHOE JasibHenllee NPUMEHEHNE B aHAM3e MHUMbIX HabtoAeHWIA, MOAYYEHHbIX M3 cumynaumnii N-Ten.
MpoaonKeHne nccaeaoBaHmsa byaet cocpeaoToYeHOo Ha pacllMpeHnn 3Toro metoa Ha bosiee peancTuyHble

HabtofaTebHble CLUEHAPUK.

Knioyesble cnosa: 38e34Hble CKOMJIEHUA, moaennpoBaHme N-Ten, mawmnHHoe o6yqume, O6yHeHVIe C

yqyunTenem.
Introduction

In recent decades, observational data has been
growing intensively with the development of
technology. Analyzing these data gives us new
concepts about the evolution of stellar systems,
Galaxies, and the Universe [1]. The study of star
formation reveals more about the evolution of
galaxies and the universe asawhole [1, 2]. Stars form
from interstellar gas and dust. Open clusters (OCs),
characterized by their relatively young ages
(<100 Myr) and consisting of up to few thousand of
stars, serve as invaluable laboratories for studying
stellar evolution and dynamics [3].

Currently, more than four thousand OCs have
been found in our galaxy. Gaia observations have
played a crucial role in this discovery, providing a
comprehensive and accurate three-dimensional map
of stars, including their motions, luminosity,
temperature, and composition [3, 4]. Identifying the
membership of stars within these clusters is essential
for understanding star formation and stellar evolution
processes. Various methods, such as machine

learning (ML), have been applied to datasets such as
Gaia observations [4, 5]. Commonly used machine
learning methods are random forest, k-nearest
neighbors (KNN), and unsupervised learning
methods such as StarGo, UPMASK, and Gaussian
mixture model (GMM) [6-10].

While these methods produce significant results
and contribute to various catalogs, comparisons
among such studies often reveal discrepancies. For
instance, three different research (CG18 [11], KC19
[12], M21 [13]) investigated the membership of the
NGC 2516 cluster. Each group reported a different
count of member stars. However, only 25% of the
stars identified by KC19, 41% by M21, and 68% by
CG18 are consistent with one another [14]. These
inconsistencies highlight the potential for errors in
star classification, motivating our exploration of
alternative approaches for membership analysis.

In this work, we explore the possibilities of using ML
models on N-body simulations for the membership
analysis of OCs. Previous discussions have indicated
significant discrepancies in star memberships within
catalogs, possibly due to observational limitations
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and methodological differences. To address these
challenges, we propose leveraging N-body
simulations where stars are pre-labeled as members
or non-members throughout their simulated lifespan.
This approach provides a robust framework for
applying and testing ML approaches, potentially
leading to the development of more accurate and
effective methods for membership analysis.

Methods

The study utilized diverse N-body simulations
of star clusters featuring variations in positions,
masses, types of stars, and other parameters. These
simulations exhibit discrepancies stemming from
factors such as the number of stars, random
configurations, and the star formation efficiency,
illustrating the percentage of the gas mass designated
for generating stars. Each simulation category
encompasses a range of numerical data concerning
Open Clusters stars at each time interval during the
cluster's evolution in N-body time. Notably, the
simulations in this investigation are rooted in the
Plummer model, where the density peaked in the
center and the star formation efficiency is constant
during one free fall time throughout the gas. And that
time passes faster in the center than at the edge of the
gas cloud, and more stars form in the center. [15, 16].
Random realizations represent probabilistic values
allocated to the initial positions and masses at the
start of the simulation. Simulations featuring distinct
random realizations exhibit variations in either mass
or position. Specifically, there are three different
random realizations of both position and mass, as
indicated in Table 1. For each Star Formation
Efficiency, nine simulations exist encompassing all
possible combinations of random realizations for
position and mass, as referenced in Table 2. Four
SFEs in total result in a cumulative count of 36
simulations.

Table 1 - All random realizations of position and
mass

Positions (P) Mass (M)
1 1
2 2
3 3

Table 2 - All combinations of random realizations,
where the first number indicates the position and the
second number indicates the mass

11 12 13
21 22 23
31 32 33

In this investigation, SFEs ranged from 15% to
25% and featured a population of 10454 stars before
instantaneous gas expulsion. This choice was
motivated by the understanding that star clusters with
lower SFEs and fewer stars are prone to reduced
stability and quicker dissolution compared to those
with higher SFEs and larger star populations. Within
the 10454-star ensemble, approximately 20% of faint
stars were omitted from the training dataset.
According to data from the Gaia databases, stars with
apparent magnitudes exceeding 21 magnitude in G-
band [17] would be indiscernible to observers; thus
they were also omitted from both training and testing
datasets, along with other faint stars. Consequently,
approximately 6000 stars remained for further
analysis. Nonetheless, further reduction may be
feasible, as certain stars may drift too far from the
cluster over time. Details regarding the methodology
for such refinement will be provided in subsequent
sections.

For learning and testing, characteristics should
be accessible and observable through observations,
necessitating the selection of specific features. These
features include the 2D galactocentric coordinates,
velocities in corresponding directions, color index,
and apparent magnitude. The primary rationale
behind this choice is that these features are readily
available in various datasets, making them suitable
for study. This approach enables the exclusion of
background stars from the testing and training
processes, as background stars have minimal impact
on the data when viewed from 150 parsecs above the
galactic plane. We opted for 2D coordinates to
simulate the scenario of observing the cluster from a
vantage point situated 150 parsecs above the galactic
plane along the Z-axis. Additionally, the presence of
other stars in the Galaxy, known as field stars,
necessitates their exclusion from consideration when
observed from this elevated perspective. The color
index (B-V) and apparent magnitude (m) serve as
indirect measurements for the distance (Z-axis). The
apparent magnitude is not directly incorporated into
the simulations but can be computed using the
formula:

m =M + 5(lgd — 5), (D
where d = 150 — Z.
Learning and testing
The selection and overall approach to training
the model on simulated star clusters posed the most
critical and challenging aspect of the research. Given

the tendency of open clusters to begin dissolving in
their early stages of evolution and considering the
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general similarity across small time intervals and
specific stages of cluster evolution, determining
which snapshot model to train proved to be
particularly difficult. Moreover, imbalance became a
concern as the cluster dissolved, resulting in fewer
members and more non-members.

The imbalance issue was addressed by removing
stars located more than 3 Jacobi radii from the
cluster's center, ensuring they would not influence the
learning process and maintaining a more balanced
dataset. This approach facilitated effective training
and testing, as stars distant from the cluster are easily
identified as non-members due to their significant
distance from the cluster's actual domain. This
approach enabled the development of new learning
strategies incorporating additional timeframes for
training. While this resulted in a reduction in the
number of stars in the datasets, the extent of this
reduction varies across different timeframes and is
not fixed.

The strategy for learning is to train on the
snapshot after violent relaxation. This is the stage of
the cluster equilibrium and will save the dynamic that
would continue throughout the whole life-cycle of the
cluster. In our simulations, the period is from 20 Myr
to 100 Myr [17, 18]. The learning datasets are
randomly chosen from 20 snapshot datasets. Learning
on more snapshots is possible but will lead to
overfitting, which would decrease performance. This
approach was used for simulation with 15% SFE and
1st random realization for both position and mass, as
shown in Table 3 with gray color. Further simulations
with randomizations are given as simple numbers
after the SFE number and "-" like "17-13", meaning
17% SFE with the 1st random realization of position
and the 3rd random realization of mass.

Table 3 — Types of simulations used for testing. Gray
is the simulation that was not tested but used for training.
Pink is a simulation similar to training datasets, either by
position or mass. Violet are the simulations that are
completely different from learning data sets by position
and mass.

11 12 13
21 22 23
31 32 33

For the testing, the trained model is used to
predict membership of OC simulations with different
SFEs of 17%, 20%, and 25% with position and mass
random realizations as indicated in Table 3 with pink
and violet colors. The time period used was from 20
Myr (end of violent relaxation) until the time-step
when the cluster would have a Jacobi mass of less
than 100 solar mass since it will be considered a

dissolved cluster. Despite the absence of a mass
feature in learning and testing, the state of the cluster
with 100 solar mass can be calculated by the
corresponding Jacobi radius formula [19]:

R — GM; )
1= @ @

where G is the gravitational constant, M; is Jacobi
mass, £ is normalized epicyclic frequency, and 2 is
the angular speed of the star cluster [16]. Another
stopping condition is the number of member stars,
and an OC with less than 50 stars would not be
considered OC.

Machine learning algorithm

We tested multiple supervised algorithms for the
classification but only presented one most successful
model, Random Forest (RF). The RF algorithm is the
decision tree algorithm for various high-dimensional
data. It works by bootstrapping (randomly creating
new datasets from input datasets) and building a
predictive tree. After that, each sample goes through
these trees, and the algorithm selects the average
output of those trees [20]. Despite being an ML model
for datasets with multiple features, it proved to be
very good at predicting the membership of the OCs
[21], [22], [23]. Thus, testing and application of this
algorithm were a high priority of the paper.

RF classifiers from the scikit-learn package have
multiple hyperparameters, and major
hyperparameters are the number of trees, max tree
depth, max number of features, etc. The number of
trees or estimators depends on the dataset, and a more
significant number of trees can lead to a more
accurate classification but also may cause longer
runtime and overfitting. Max depth accounts for how
many depth of leaves the tree should have when
running the algorithm. Max depth affects the
computational complexity of the learning and
prediction.

The maximum number of features is the number
used for the node split of the tree, and it can be either
square root or log, type. As for the criterion, the Gini
index is used to measure the impurity in the values of
datasets. Also, it is possible to use random states. In
this study, the random forest has 100 trees, a max
depth of 10, a square root type of max features (6
features ~ 2.49), and a random state of 42. It was
possible to use a higher number of trees that would
have also been deeper, but it was performing well as
it is, and there was no real need to increase the
complexity of both learning and testing. Other
hyperparameters are left as default.
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Evaluation metrics

The primary evaluation metric is the accuracy on
other N-body simulation snapshots. It shows a
percentage of how well the prediction was done
broadly.

Table 4 — Confusion matrix of binary classification
of stars

Prediction
Non- Member
Member
Non-
ég}ﬂzl Member TN FP
Member FN TP

Despite having the general metric, we need to
analyze true negatives (TN) and true positives (TP)
for binary classification to understand performance
better. The performance of the binary classification
can be summarized with the confusion matrix shown
in Table 4. The diagonal represents the number of
correctly classified samples, and other values
represent the number of samples classified
incorrectly either as False Negative (FN) or False
Positive (FP) [24]. Considering that a significant
proportion of the testing samples would be either TP
or TN, the true performance will be seen in the rates
of FP and FN: False Positive Rate (FPR) and False
Negative Rate (FNR). It is simply the rate of how
many real positives or negatives are classified
wrongly on the test. Formulas can be seen below:

FPR = Fp 3
" TN + FP’ (3)
FNR = 25 T FN' (4)

Results and discussions

In this chapter, we would like to present the
results of this work and show the performance of
models according to evaluation metrics and further
analysis of results. All dependent plots are given with
the logarithmic scale because for each Myr on the x-
axis until 175 Myr has six datasets. This is the reason
why the plot is thicker until 200 Myr.

In plots, it is noticeable that there are several
trends in all the tests for all SFEs. Firstly, it is evident
that performance is very high, exceeding 90%.
However, this trend is only universal in earlier time
frames of the classification. Mostly, it is because OC

8

dissolves, and as time goes by, there will be fewer
and fewer member star samples.

Classification performance on simulations with
17% SFE can be seen on the top panel of Figures 1
and 2. The accuracy stays high, but the actual drop
starts at different late snapshots on different
simulations. This is because OCs with lesser SFE
tend to be less stable and dissolve faster. Early
dissolving ones are the SFE 17-13 and 17-33. These
random realizations have similar masses and start
dissolving at the similar age of 400-500 Myr. Other
simulations are more stable, and the actual drop in
performance is less than 90% after 600 Muyrs.
However, even until the end, they maintained a high
performance of closer to 80%.

Further, we’ve done an analysis of FPs and FNs
throughout the dynamic evolution. In the case of
simulations with 17% SFE in the early timeframes,
the rate of FN stays highest and, over time, decreases,
eventually reaching 0. This means that the model
makes a few mistakes with star members of the
cluster, and we mostly do not lose member stars
during the classification. On the other hand, the
amount of FP stays low at 20 Myr, but on further
snapshots, it only increases and almost reaches 50%
at the end. This means the model mistakes up to 50%
of the non-members as members. Considering that
the cluster is cut to a 3 Jacobi radius, this is the
expected result.

Cluster classification examples at different ages
are shown in Figure 3. The colors represent the type
of classification from Table 3. In Figure 3 (top right
panel), you can see how the model identified
membership of stars at 20 Myr. Classification
accuracy is around 92.7%, with 157 FPs and 83 FNs.
In simulations, violent relaxation ends at 20 Myr,
which is the starting testing period. The picture
shows that the cluster's shape is generally captured,
and it correctly classified both members and non-
members for the most part. This is evident from the
circular shape of the identified cluster and the
location of the TPs and TNs. However, you may also
see that all the FP and FN are located at the 2D plane
or on the borders of the cluster. This means that
mistakes mostly happen because of the absence of
the Z plane because most of the FPs are located upper
or lower to the X and Y planes on the Z axis. FN is
located on borders, meaning that they are marginal
statistical errors of the ML model. Despite these
errors, these are promising results for young OC with
17% SFE and 20 Myrs.

Similar results can be seen with the same cluster
after 100 Myr later in Figure 3 (top left panel), but
the accuracy is higher and reached 95%. The
numbers of FP and FN are 39 and 33, respectively.
Considering the lower number of non-members, this
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can be regarded as a good performance. Placements
of the FPs and FNs are similar, but mistakes are
considerably lower now than before.

The classification at 500 Myr can be seen in
Figure 3 (bottom panel). The accuracy at that age is
93%, with no FNs and 42 FPs. FPs are both on
borders and on the Z plane, higher or lower than the
cluster.

Overall, the number of stars is decreasing, and
this kind of performance will continue for the whole
dynamic evolution.

From the analysis of the layout of the stars, we
identified that most of the mistakes happen to stars
on cluster borders and on stars that are higher or
lower than the Z plane. Most mistakes are the FPs,
and FNs are mostly statistical mistakes that are not
present in the further testing age. This raises the
question of whether this number of FPs is acceptable

for the membership analysis. To explore this, we
need to know how far these stars are from the
cluster's center. The cluster border is found by the
Jacobi radius, and FPs are not within the Jacobi
radius.

However, they might be within a two or 3 Jacobi
radius, and at a 2 Jacobi radius distance, stars might
still be gravitationally bound to the cluster's center.

The number of FPs within 2 and 3 Jacobi radii
as a function of time can be seen in Figure 4.

From these results, we can see that most of the
FPs are within a 2 Jacobi radius in all the
classifications with different SFEs, and they may still
be gravitationally bound to the center of the cluster.
Thus, even FPs' mistakes can be considered member
candidates in the future.
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Figure 1 — Performance evaluation of RF model on simulations with 17% SFE on pink models from Table 2 in terms
of Accuracy (top panel), False Positive Rate (bottom left panel), and False Negative Rate (bottom right panel)
throughout the dynamic evolution.



Exploring open star cluster memberships with N-body simulations and machine learning

1.00
(g"' e % <
\ o o . /AL .
o VR % ') ; ' e \O\ \ :
095} 7 A '-‘.’l ¥ ” M
SV\. ‘;“ \
090} )
a0 ([ 1 . ‘
VM
z 083 '? |
g ’ ,'
2
* {
080 | 4
075} l
— afe 1722 \
o70F—— sfe 17-23
— ste 17-32
— sfe 17-33
10% 10°
Myr
051 — sfe 17-22 1
— sfe 17-23 0.07}
— gfe 17-32
— sfe 17-33
0.4} 1 o006}
0.05
o 2
203 °
s H
= 2 0.04}
E a
£ £
3
0.03f
foz 13
-
0.02
0.1
0.011
0.0 0.00}
10¢ 10° 10? 10°
Myr Myr

Figure 2 — Performance evaluation of RF model on simulations with 17% SFE on violet models from Table 2 in terms
of Accuracy (top panel), False Positive Rate (bottom left panel), and False Negative Rate (bottom right panel)
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Figure 4 — The number of FPs throughout the test was
within 2 Jacobi radius (blue) and between 2 and 3 Jacobi
radius (green) on simulation with 17% SFE and 22
random realizations. There were no FPs beyond these
distances

Conclusion

This work explores the possibilities of using the
supervised learning approach combined with N-body
simulations for membership determination. We
trained the RF model on simulation with 15% SFE
on the 20 random snapshots of its dynamic
evolution's 20-100 Myr timeframe. This specific age
of the cluster is chosen because it is the end of violent
relaxation. Validation tests were done on N-body
simulations with 17% SFE and different
randomizations.

The model can predict the membership of all
snapshots from 20 Myr until its dissolution with
varying accuracy. The majority of snapshots, until
getting close to dissolution, exceed 90%. Despite
having such performance, it is identified that the
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model tends to mistake non-member stars as
members (FP), and the number of FPs only increased
due to a lesser number of stars in testing and closer
to the complete dissolution. However, most of the
FPs are located inside the 2 Jacobi radius, which
might indicate that those stars are still gravitationally
bound to the cluster's center and may still be
considered member stars. This framework shows that
it is possible to train a supervised ML model on N-
body simulation to predict the membership of similar
and utterly different N-body simulations with six
easily obtainable features, such as 2D coordinates,
velocities, color index, and apparent magnitude.
Nonetheless, this is just a proof of idea and cannot be
used for observation with described interpretation.

As for future plans, we will apply this strategy
to the simulations converted to mock observed
simulations. Current simulations are in cluster-
centered coordinates, and mock observation versions
of the simulations would have features in a format
that can be seen in actual observational data. Also,
the clusters will be placed on the Galactic disk
viewed from the position of the Sun. This should
make classification more complex. Under these
conditions, background stars will play a considerable
role, and distinguishing field stars from cluster
members will be hard for the supervised ML model.
Additionally, we plan to use N-body simulations as a
testing ground for other ML models, such as Star
Galactic Origins, various density-based scanners,
and more.
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