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EXPLORING OPEN STAR CLUSTER MEMBERSHIPS WITH N-BODY SIMULATIONS  
AND MACHINE LEARNING 

 
This work explores the application of supervised machine learning algorithms on N-body simulations to 

analyze the membership of open star clusters. The simulations used in this study are based on the Plummer 
model, clusters formed with constant star-formation efficiency (SFE) per free-fall time. We use simulations 
with different SFE and initial random realization. The random forest model was trained using simulations 
based on a 15% SFE over a time period of 20-100 million years. Subsequently, the model was tested on other 
N-body simulations with SFEs ranging from 17% to 25%, demonstrating consistently high classification 
accuracy throughout the dynamic evolution of the tested simulations. The model successfully identified 
cluster members with minimal deviations despite variations in SFE. Additionally, the algorithm maintained 
robustness against noise and initial conditions. Most of the errors observed in the model were false positives 
(FP), often located within a 2 Jacobi radius, suggesting gravitational binding to the cluster's center. This 
framework and learning strategy exhibit effectiveness and hold promise for further application in analyzing 
mock observations obtained from N-body simulations. Future work will focus on extending this method to 
more realistic observational scenarios. 
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N-денені модельдеу және машиналық оқыту арқылы  
шашыраңқы жұлдыздық шоғырларға мүшелікті зерттеу 

 
Бұл жұмыс шашыраңқы жұлдыздық шоғырға мүшелікті талдау үшін N-денелі модельдеулерге 

Машиналық оқыту алгоритмдерін қолдануды зерттейді. Осы зерттеуде пайдаланылған симуляциялар 
шоғырдың бір еркін құлау уақытында  жұлдыз түзілу тиімділігі (ЖТТ) тұрақты болатын Пламмер 
моделіне негізделген. Біз әртүрлі ЖТТ мен бастапқы кездейсоқ таралулармен ерекшеленетін 
симуляцияларды қолданамыз. Рандом Форест (Кездейсоқ орман) моделі 20-100 млн жыл 
аралығындағы ЖТТ 15%-ға негізделген симуляцияға оқытылды. Кейіннен ол ЖТТ 17%-дан 25%-ға дейінгі 
басқа N-дене симуляцияларына сыналды, және бұл модель сыналған симуляциялардың динамикалық 
эволюциясы барысында дәйекті жоғары жіктеу дәлдігін көрсетті. Модель жұлдыздардың пайда болу 
тиімділігінің өзгеруіне қарамастан кластер мүшелерін минималды ауытқулармен сәтті анықтай алды. 
Сонымен қатар, алгоритм шуыл мен бастапқы шарттардың өзгерісіне қатысты тұрақтылықғын сақтап 
қалды. Модельде байқалған қателіктердің көпшілігі жалған позитивтер (FP) болды, олар көбінесе 2 
Якоби радиусында орналасады, бұл шоғырдың центрімен гравитациялық байланысуының себебінен 
деп болжанады. Осы негіздемелік бағдарлама мен оқыту стратегиясы тиімді екен және N-дене 
симуляцияларын жорамал бақылауларын талдауда одан әрі қолданысқа ие болады. Болашақта осы 
жұмыстағы әдісті неғұрлым нақты бақылау сценарийлеріне дейін кеңейтуге бағытталады. 

Түйін сөздер: жұлдыздық шоғырлар, N-денені модельдеу,машиналық оқыту, бақыланатын оқыту. 
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Исследование членства в рассеянных звездных скоплениях  
с помощью моделирования N-тел и машинного обучения 

 
В данной работе приведены результаты исследования по применению алгоритмов машинного 

обучения с учителем на симуляциях N-тел для анализа членства в рассеянных звездных скоплениях. 
Моделирование, использованное в данном исследовании, основано на модели Пламмера, а кластеры 
сформированы с постоянной эффективностью звездообразования (ПЭЗ) на время свободного падения. 
Каждая симуляция отличается ПЭЗ и начальной случайной реализацией. Модель случайного леса была 
обучена с использованием симуляций на основе эффективности образования звезд на уровне 15% за 
период времени от 20 до 100 миллионов лет. Затем модель была протестирована на других симуляциях 
N-тел с эффективностями образования звезд от 17% до 25%, и показана постоянная высокая точность 
классификации на протяжении динамической эволюции протестированных симуляций. Модель 
успешно определила звезды, относящиеся к кластеру с минимальными отклонениями, несмотря на 
вариации в эффективности звездообразования. Кроме того, алгоритм сохранял устойчивость к шуму и 
начальным условиям. Большинство ошибок, обнаруженные в модели, были ложными срабатываниями 
(FP) часто находящимися в пределах двух радиусов Якоби, что указывает на гравитационную 
привязанность к центру скопления. Показаны эффективность данной структуры и стратегии обучения и 
возможное дальнейшее применение в анализе мнимых наблюдений, полученных из симуляций N-тел. 
Продолжение исследования будет сосредоточено на расширении этого метода на более реалистичные 
наблюдательные сценарии. 

Ключевые слова: звездные скопления, моделирование N-тел, машинное обучение, обучение с 
учителем. 
 

Introduction 

 

In recent decades, observational data has been 

growing intensively with the development of 

technology. Analyzing these data gives us new 

concepts about the evolution of stellar systems, 

Galaxies, and the Universe [1]. The study of star 

formation reveals more about the evolution of 

galaxies and the universe as a whole [1, 2]. Stars form 

from interstellar gas and dust. Open clusters (OCs), 

characterized by their relatively young ages 

(<100 Myr) and consisting of up to few thousand of 

stars, serve as invaluable laboratories for studying 

stellar evolution and dynamics [3].  

Currently, more than four thousand OCs have 

been found in our galaxy. Gaia observations have 

played a crucial role in this discovery, providing a 

comprehensive and accurate three-dimensional map 

of stars, including their motions, luminosity, 

temperature, and composition [3, 4]. Identifying the 

membership of stars within these clusters is essential 

for understanding star formation and stellar evolution 

processes. Various methods, such as machine 

learning (ML), have been applied to datasets such as 

Gaia observations [4, 5]. Commonly used machine 

learning methods are random forest, k-nearest 

neighbors (KNN), and unsupervised learning 

methods such as StarGo, UPMASK, and Gaussian 

mixture model (GMM) [6-10]. 

While these methods produce significant results 

and contribute to various catalogs, comparisons 

among such studies often reveal discrepancies. For 

instance, three different research (CG18 [11], KC19 

[12], M21 [13]) investigated the membership of the 

NGC 2516 cluster. Each group reported a different 

count of member stars. However, only 25% of the 

stars identified by KC19, 41% by M21, and 68% by 

CG18 are consistent with one another [14]. These 

inconsistencies highlight the potential for errors in 

star classification, motivating our exploration of 

alternative approaches for membership analysis. 

In this work, we explore the possibilities of using ML 

models on N-body simulations for the membership 

analysis of OCs. Previous discussions have indicated 

significant discrepancies in star memberships within 

catalogs, possibly due to observational limitations 
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and methodological differences. To address these 

challenges, we propose leveraging N-body 

simulations where stars are pre-labeled as members 

or non-members throughout their simulated lifespan. 

This approach provides a robust framework for 

applying and testing ML approaches, potentially 

leading to the development of more accurate and 

effective methods for membership analysis. 

 

Methods  

 

The study utilized diverse N-body simulations 

of star clusters featuring variations in positions, 

masses, types of stars, and other parameters. These 

simulations exhibit discrepancies stemming from 

factors such as the number of stars, random 

configurations, and the star formation efficiency, 

illustrating the percentage of the gas mass designated 

for generating stars. Each simulation category 

encompasses a range of numerical data concerning 

Open Clusters stars at each time interval during the 

cluster's evolution in N-body time. Notably, the 

simulations in this investigation are rooted in the 

Plummer model, where the density peaked in the 

center and the star formation efficiency is constant 

during one free fall time throughout the gas. And that 

time passes faster in the center than at the edge of the 

gas cloud, and more stars form in the center. [15, 16]. 

Random realizations represent probabilistic values 

allocated to the initial positions and masses at the 

start of the simulation. Simulations featuring distinct 

random realizations exhibit variations in either mass 

or position. Specifically, there are three different 

random realizations of both position and mass, as 

indicated in Table 1. For each Star Formation 

Efficiency, nine simulations exist encompassing all 

possible combinations of random realizations for 

position and mass, as referenced in Table 2. Four 

SFEs in total result in a cumulative count of 36 

simulations. 

 
Table 1 - All random realizations of position and 

mass 

 

Positions (P) Mass (M) 

1 1 

2 2 

3 3 

 
Table 2 - All combinations of random realizations, 

where the first number indicates the position and the 

second number indicates the mass 

 

11 12 13 

21 22 23 

31 32 33 

In this investigation, SFEs ranged from 15% to 

25% and featured a population of 10454 stars before 

instantaneous gas expulsion. This choice was 

motivated by the understanding that star clusters with 

lower SFEs and fewer stars are prone to reduced 

stability and quicker dissolution compared to those 

with higher SFEs and larger star populations. Within 

the 10454-star ensemble, approximately 20% of faint 

stars were omitted from the training dataset. 

According to data from the Gaia databases, stars with 

apparent magnitudes exceeding 21 magnitude in G-

band [17] would be indiscernible to observers; thus 

they were also omitted from both training and testing 

datasets, along with other faint stars. Consequently, 

approximately 6000 stars remained for further 

analysis. Nonetheless, further reduction may be 

feasible, as certain stars may drift too far from the 

cluster over time. Details regarding the methodology 

for such refinement will be provided in subsequent 

sections. 

For learning and testing, characteristics should 

be accessible and observable through observations, 

necessitating the selection of specific features. These 

features include the 2D galactocentric coordinates, 

velocities in corresponding directions, color index, 

and apparent magnitude. The primary rationale 

behind this choice is that these features are readily 

available in various datasets, making them suitable 

for study. This approach enables the exclusion of 

background stars from the testing and training 

processes, as background stars have minimal impact 

on the data when viewed from 150 parsecs above the 

galactic plane. We opted for 2D coordinates to 

simulate the scenario of observing the cluster from a 

vantage point situated 150 parsecs above the galactic 

plane along the Z-axis. Additionally, the presence of 

other stars in the Galaxy, known as field stars, 

necessitates their exclusion from consideration when 

observed from this elevated perspective. The color 

index (B–V) and apparent magnitude (m) serve as 

indirect measurements for the distance (Z-axis). The 

apparent magnitude is not directly incorporated into 

the simulations but can be computed using the 

formula: 

 

𝑚 = 𝑀 + 5(𝑙𝑔𝑑 − 5),            (1) 

 

where 𝑑 = 150 − 𝑍. 
 

Learning and testing 

 

The selection and overall approach to training 

the model on simulated star clusters posed the most 

critical and challenging aspect of the research. Given 

the tendency of open clusters to begin dissolving in 

their early stages of evolution and considering the 
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general similarity across small time intervals and 

specific stages of cluster evolution, determining 

which snapshot model to train proved to be 

particularly difficult. Moreover, imbalance became a 

concern as the cluster dissolved, resulting in fewer 

members and more non-members. 

The imbalance issue was addressed by removing 

stars located more than 3 Jacobi radii from the 

cluster's center, ensuring they would not influence the 

learning process and maintaining a more balanced 

dataset. This approach facilitated effective training 

and testing, as stars distant from the cluster are easily 

identified as non-members due to their significant 

distance from the cluster's actual domain. This 

approach enabled the development of new learning 

strategies incorporating additional timeframes for 

training. While this resulted in a reduction in the 

number of stars in the datasets, the extent of this 

reduction varies across different timeframes and is 

not fixed. 

The strategy for learning is to train on the 

snapshot after violent relaxation. This is the stage of 

the cluster equilibrium and will save the dynamic that 

would continue throughout the whole life-cycle of the 

cluster. In our simulations, the period is from 20 Myr 

to 100 Myr [17, 18]. The learning datasets are 

randomly chosen from 20 snapshot datasets. Learning 

on more snapshots is possible but will lead to 

overfitting, which would decrease performance. This 

approach was used for simulation with 15% SFE and 

1st random realization for both position and mass, as 

shown in Table 3 with gray color. Further simulations 

with randomizations are given as simple numbers 

after the SFE number and "-" like "17-13", meaning 

17% SFE with the 1st random realization of position 

and the 3rd random realization of mass.  

 
Table 3 – Types of simulations used for testing. Gray 

is the simulation that was not tested but used for training. 

Pink is a simulation similar to training datasets, either by 

position or mass. Violet are the simulations that are 

completely different from learning data sets by position 

and mass. 

 
11 12 13 

21 22 23 

31 32 33 

 
For the testing, the trained model is used to 

predict membership of OC simulations with different 

SFEs of 17%, 20%, and 25% with position and mass 

random realizations as indicated in Table 3 with pink 

and violet colors. The time period used was from 20 

Myr (end of violent relaxation) until the time-step 

when the cluster would have a Jacobi mass of less 

than 100 solar mass since it will be considered a 

dissolved cluster. Despite the absence of a mass 

feature in learning and testing, the state of the cluster 

with 100 solar mass can be calculated by the 

corresponding Jacobi radius formula [19]: 

 

𝑅𝑗 =
𝐺𝑀𝑗

(4 − 𝛽2)𝛺2
,                        (2) 

 

where 𝐺 is the gravitational constant, 𝑀𝑗 is Jacobi 

mass, 𝛽 is normalized epicyclic frequency, and 𝛺 is 

the angular speed of the star cluster [16]. Another 

stopping condition is the number of member stars, 

and an OC with less than 50 stars would not be 

considered OC.  

 

 

Machine learning algorithm 

 

We tested multiple supervised algorithms for the 

classification but only presented one most successful 

model, Random Forest (RF). The RF algorithm is the 

decision tree algorithm for various high-dimensional 

data. It works by bootstrapping (randomly creating 

new datasets from input datasets) and building a 

predictive tree. After that, each sample goes through 

these trees, and the algorithm selects the average 

output of those trees [20]. Despite being an ML model 

for datasets with multiple features, it proved to be 

very good at predicting the membership of the OCs 

[21], [22], [23]. Thus, testing and application of this 

algorithm were a high priority of the paper. 

RF classifiers from the scikit-learn package have 

multiple hyperparameters, and major 

hyperparameters are the number of trees, max tree 

depth, max number of features, etc. The number of 

trees or estimators depends on the dataset, and a more 

significant number of trees can lead to a more 

accurate classification but also may cause longer 

runtime and overfitting. Max depth accounts for how 

many depth of leaves the tree should have when 

running the algorithm. Max depth affects the 

computational complexity of the learning and 

prediction.  

The maximum number of features is the number 

used for the node split of the tree, and it can be either 

square root or 𝑙𝑜𝑔2 type. As for the criterion, the Gini 

index is used to measure the impurity in the values of 

datasets. Also, it is possible to use random states. In 

this study, the random forest has 100 trees, a max 

depth of 10, a square root type of max features (6 

features ~ 2.49), and a random state of 42. It was 

possible to use a higher number of trees that would 

have also been deeper, but it was performing well as 

it is, and there was no real need to increase the 

complexity of both learning and testing. Other 

hyperparameters are left as default.  
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Evaluation metrics 

 

The primary evaluation metric is the accuracy on 

other N-body simulation snapshots. It shows a 

percentage of how well the prediction was done 

broadly.  

 
Table 4 – Confusion matrix of binary classification 

of stars 

 

 Prediction 

Non-

Member 

Member 

Actual 

value 

Non-

Member 
TN FP 

Member FN TP 

 

Despite having the general metric, we need to 

analyze true negatives (TN) and true positives (TP) 

for binary classification to understand performance 

better. The performance of the binary classification 

can be summarized with the confusion matrix shown 

in Table 4. The diagonal represents the number of 

correctly classified samples, and other values 

represent the number of samples classified 

incorrectly either as False Negative (FN) or False 

Positive (FP) [24]. Considering that a significant 

proportion of the testing samples would be either TP 

or TN, the true performance will be seen in the rates 

of FP and FN: False Positive Rate (FPR) and False 

Negative Rate (FNR). It is simply the rate of how 

many real positives or negatives are classified 

wrongly on the test. Formulas can be seen below: 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
,                           (3) 

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
.                           (4) 

 

 

 

Results and discussions 

 

In this chapter, we would like to present the 

results of this work and show the performance of 

models according to evaluation metrics and further 

analysis of results. All dependent plots are given with 

the logarithmic scale because for each Myr on the x-

axis until 175 Myr has six datasets. This is the reason 

why the plot is thicker until 200 Myr. 

In plots, it is noticeable that there are several 

trends in all the tests for all SFEs. Firstly, it is evident 

that performance is very high, exceeding 90%. 

However, this trend is only universal in earlier time 

frames of the classification. Mostly, it is because OC 

dissolves, and as time goes by, there will be fewer 

and fewer member star samples.  

Classification performance on simulations with 

17% SFE can be seen on the top panel of Figures 1 

and 2. The accuracy stays high, but the actual drop 

starts at different late snapshots on different 

simulations. This is because OCs with lesser SFE 

tend to be less stable and dissolve faster. Early 

dissolving ones are the SFE 17-13 and 17-33. These 

random realizations have similar masses and start 

dissolving at the similar age of 400-500 Myr. Other 

simulations are more stable, and the actual drop in 

performance is less than 90% after 600 Myrs. 

However, even until the end, they maintained a high 

performance of closer to 80%. 

Further, we’ve done an analysis of FPs and FNs 

throughout the dynamic evolution. In the case of 

simulations with 17% SFE in the early timeframes, 

the rate of FN stays highest and, over time, decreases, 

eventually reaching 0. This means that the model 

makes a few mistakes with star members of the 

cluster, and we mostly do not lose member stars 

during the classification. On the other hand, the 

amount of FP stays low at 20 Myr, but on further 

snapshots, it only increases and almost reaches 50% 

at the end. This means the model mistakes up to 50% 

of the non-members as members. Considering that 

the cluster is cut to a 3 Jacobi radius, this is the 

expected result. 

Cluster classification examples at different ages 

are shown in Figure 3. The colors represent the type 

of classification from Table 3. In Figure 3 (top right 

panel), you can see how the model identified 

membership of stars at 20 Myr. Classification 

accuracy is around 92.7%, with 157 FPs and 83 FNs. 

In simulations, violent relaxation ends at 20 Myr, 

which is the starting testing period. The picture 

shows that the cluster's shape is generally captured, 

and it correctly classified both members and non-

members for the most part. This is evident from the 

circular shape of the identified cluster and the 

location of the TPs and TNs. However, you may also 

see that all the FP and FN are located at the 2D plane 

or on the borders of the cluster. This means that 

mistakes mostly happen because of the absence of 

the Z plane because most of the FPs are located upper 

or lower to the X and Y planes on the Z axis. FN is 

located on borders, meaning that they are marginal 

statistical errors of the ML model. Despite these 

errors, these are promising results for young OC with 

17% SFE and 20 Myrs.  

Similar results can be seen with the same cluster 

after 100 Myr later in Figure 3 (top left panel), but 

the accuracy is higher and reached 95%. The 

numbers of FP and FN are 39 and 33, respectively. 

Considering the lower number of non-members, this 
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can be regarded as a good performance. Placements 

of the FPs and FNs are similar, but mistakes are 

considerably lower now than before. 

The classification at 500 Myr can be seen in 

Figure 3 (bottom panel). The accuracy at that age is 

93%, with no FNs and 42 FPs. FPs are both on 

borders and on the Z plane, higher or lower than the 

cluster.  

Overall, the number of stars is decreasing, and 

this kind of performance will continue for the whole 

dynamic evolution.  

From the analysis of the layout of the stars, we 

identified that most of the mistakes happen to stars 

on cluster borders and on stars that are higher or 

lower than the Z plane. Most mistakes are the FPs, 

and FNs are mostly statistical mistakes that are not 

present in the further testing age. This raises the 

question of whether this number of FPs is acceptable 

for the membership analysis. To explore this, we 

need to know how far these stars are from the 

cluster's center. The cluster border is found by the 

Jacobi radius, and FPs are not within the Jacobi 

radius.  

However, they might be within a two or 3 Jacobi 

radius, and at a 2 Jacobi radius distance, stars might 

still be gravitationally bound to the cluster's center.  

The number of FPs within 2 and 3 Jacobi radii 

as a function of time can be seen in Figure 4.  

From these results, we can see that most of the 

FPs are within a 2 Jacobi radius in all the 

classifications with different SFEs, and they may still 

be gravitationally bound to the center of the cluster. 

Thus, even FPs' mistakes can be considered member 

candidates in the future.  

 

 

 

 
Figure 1 – Performance evaluation of RF model on simulations with 17% SFE on pink models from Table 2 in terms 

of Accuracy (top panel), False Positive Rate (bottom left panel), and False Negative Rate (bottom right panel) 

throughout the dynamic evolution. 
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Figure 2 – Performance evaluation of RF model on simulations with 17% SFE on violet models from Table 2 in terms 

of Accuracy (top panel), False Positive Rate (bottom left panel), and False Negative Rate (bottom right panel) 

throughout the dynamic evolution. 

 

 

  
 

Figure 3 – Classification results on 17% SFE cluster at 20 Myr (1st panel), 100 Myr (2nd),  

and 500 Myr (3rd panel). Crosses are the negatives that are either true or false.  

Triangles are the positives, both true and false. 
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Figure 4 – The number of FPs throughout the test was 

within 2 Jacobi radius (blue) and between 2 and 3 Jacobi 

radius (green) on simulation with 17% SFE and 22 

random realizations. There were no FPs beyond these 

distances 

 

Conclusion 

 

This work explores the possibilities of using the 

supervised learning approach combined with N-body 

simulations for membership determination. We 

trained the RF model on simulation with 15% SFE 

on the 20 random snapshots of its dynamic 

evolution's 20-100 Myr timeframe. This specific age 

of the cluster is chosen because it is the end of violent 

relaxation. Validation tests were done on N-body 

simulations with 17% SFE and different 

randomizations.  

The model can predict the membership of all 

snapshots from 20 Myr until its dissolution with 

varying accuracy. The majority of snapshots, until 

getting close to dissolution, exceed 90%. Despite 

having such performance, it is identified that the 

model tends to mistake non-member stars as 

members (FP), and the number of FPs only increased 

due to a lesser number of stars in testing and closer 

to the complete dissolution. However, most of the 

FPs are located inside the 2 Jacobi radius, which 

might indicate that those stars are still gravitationally 

bound to the cluster's center and may still be 

considered member stars. This framework shows that 

it is possible to train a supervised ML model on N-

body simulation to predict the membership of similar 

and utterly different N-body simulations with six 

easily obtainable features, such as 2D coordinates, 

velocities, color index, and apparent magnitude. 

Nonetheless, this is just a proof of idea and cannot be 

used for observation with described interpretation.  

As for future plans, we will apply this strategy 

to the simulations converted to mock observed 

simulations. Current simulations are in cluster-

centered coordinates, and mock observation versions 

of the simulations would have features in a format 

that can be seen in actual observational data. Also, 

the clusters will be placed on the Galactic disk 

viewed from the position of the Sun. This should 

make classification more complex. Under these 

conditions, background stars will play a considerable 

role, and distinguishing field stars from cluster 

members will be hard for the supervised ML model. 

Additionally, we plan to use N-body simulations as a 

testing ground for other ML models, such as Star 

Galactic Origins, various density-based scanners, 

and more.  
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