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ANALYTICAL SOLUTION OF THE TIME-FRACTIONAL SCHRÖDINGER EQUATION 
VIA DECOMPOSITION METHODS AND SERIES EXPANSIONS 

 
Understanding quantum systems with intrinsic memory and spatial nonlocality requires 

mathematical models beyond the limits of classical calculus. In this work, the one-dimensional 
time-fractional Schrödinger equation is examined through a hybrid analytical framework 
combining the Aboodh transform with the Adomian Decomposition Method. This formulation 
enables the reconstruction of the wave function as a rapidly convergent analytical series. The 
fractional order (α) appears as a physically significant quantity that influences both the energy 
spectrum and the temporal evolution of quantum states. The theoretical outcomes are compared 
with optical band-gap variations observed experimentally in ZnO and Al-doped ZnO 
nanostructures, demonstrating that the fractional model provides a coherent correspondence 
between theory and measurable quantum behavior. Furthermore, the proposed approach 
exhibits superior stability and reduced computational effort compared with traditional Laplace 
and Fourier schemes, making it adaptable to a wide range of fractional quantum models. 

Keywords: analytical fractional modeling, fractional Schrödinger equation, nonlocal 
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Шредингер теңдеуінің бөлшек түрін кеңейту және қатарлар әдістерін  
қолдана отырып, аналитикалық шешім 

 
Ішкі жады және кеңістіктік еместігі бар кванттық жүйелерді түсіну классикалық 

есептеулер шегінен тыс математикалық модельдерді қажет етеді. Бұл жұмыста бір өлшемді 
уақыттық-бөлшек Шредингер теңдеуі Абуд түрлендіруін Адомдық ыдырау әдісімен 
біріктіретін гибридті аналитикалық құрылым арқылы зерттеледі. Бұл тұжырым толқындық 
функцияны тез конвергентті аналитикалық қатар ретінде қалпына келтіруге мүмкіндік 
береді. Бөлшек реті (α) энергия спектріне де, кванттық күйлердің уақыттық эволюциясына 
да әсер ететін физикалық маңызды шама ретінде көрінеді. Теориялық нәтижелер ZnO және 
Al-легирленген ZnO наноқұрылымдарында эксперименттік түрде байқалған оптикалық 
жолақ аралығының вариацияларымен салыстырылады, бұл бөлшектік модель теория мен 
өлшенетін кванттық мінез-құлық арасында үйлесімді сәйкестікті қамтамасыз ететінін 
көрсетеді. Сонымен қатар, ұсынылған тәсіл дәстүрлі Лаплас және Фурье схемаларымен 
салыстырғанда жоғары тұрақтылықты және есептеу күшінің төмендеуін көрсетеді, бұл оны 
бөлшектік кванттық модельдердің кең ауқымына бейімдеуге мүмкіндік береді. 

Түйін сөздер: aналитикалық бөлшектік модельдеу, ,өлшектік Шредингер теңдеуі, 
;ергілікті емес кванттық жад, aдомиялық ыдырау әдісі, aналитикалық бөлшектік модельдеу 
механикасы. 
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Аналитическое решение уравнения Шредингера с дробной частью по времени с 
помощью методов разложения и рядовых разложений 

 
Понимание квантовых систем с внутренней памятью и пространственной 

нелокальностью требует математических моделей, выходящих за рамки классического 
исчисления. В данной работе одномерное уравнение Шрёдингера с дробной частью по 
времени исследуется с помощью гибридной аналитической модели, сочетающей 
преобразование Абудха с методом разложения Адомиана. Эта формулировка позволяет 
реконструировать волновую функцию в виде быстро сходящегося аналитического ряда. 
Дробный порядок (α) выступает в качестве физически значимой величины, влияющей как 
на энергетический спектр, так и на временную эволюцию квантовых состояний. 
Теоретические результаты сравниваются с экспериментально наблюдаемыми 
изменениями оптической ширины запрещенной зоны в наноструктурах ZnO и ZnO, 
легированных Al, что демонстрирует, что дробная модель обеспечивает согласованное 
соответствие между теорией и измеримым квантовым поведением. Кроме того, 
предложенный подход демонстрирует превосходную стабильность и меньшие 
вычислительные затраты по сравнению с традиционными схемами Лапласа и Фурье, что 
делает его адаптируемым к широкому спектру дробных квантовых моделей. 

Ключевые слова: аналитическое дробное моделирование, дробное уравнение 
Шрёдингера, нелокальная квантовая память, метод разложения Адомиана, аналитическое 
дробное моделирование механики. 

 

 
1. Introduction 

 
The extension of quantum mechanics into the 

fractional domain offers a deeper understanding of 

systems governed by memory, dissipation, and long-

range temporal correlations that cannot be captured 

by standard formulations. 

Fractional calculus provides an extended 

mathematical language capable of describing 

physical systems governed by memory and nonlocal 

interactions [1–4]. Unlike the traditional integer-

order formulations, fractional derivatives 

introduce a continuous-order differentiation that 

captures intermediate dynamical states between 

purely local and fully diffusive regimes [5,6]. Such an 

approach allows a more realistic description of 

processes where the system’s response depends not 

only on its current state but also on its entire 

evolution history. 

Over the last decade, fractional operators have 

proven particularly effective in modeling anomalous 

diffusion, viscoelastic relaxation, and complex 

transport phenomena observed in condensed matter 

and quantum systems [7–10]. In quantum mechanics, 

the fractional extension of the Schrödinger 

framework has opened new perspectives for 

exploring non-Markovian evolution and long-range 

temporal correlations in wave dynamics [11–13]. 

This formulation generalizes the standard time-

dependent Schrödinger equation by introducing a 

fractional-order derivative that regulates the rate of 

probability flow in time, thereby controlling the 

extent of quantum memory within the system 

[14,15]. 

The time-fractional Schrödinger equation 

(TFSE) thus serves as a bridge between classical 

quantum dynamics and fractional memory effects, 

enabling continuous transition from Markovian to 

non-Markovian behavior [16,17]. Despite its 

conceptual advantages, obtaining analytical 

solutions of the TFSE remains a major challenge 

because of the inherent nonlocality of fractional 

operators and the complexity of their integral kernels 

[18–20]. Standard analytical tools such as Laplace 

and Fourier transforms, or iterative perturbation 

techniques, often yield implicit integral 

representations or require heavy numerical 

computation to approximate the temporal behavior 

[21–23]. 

To overcome these limitations, the present 

study employs the Aboodh transform in conjunction 

with the Adomian Decomposition Method (ADM) 

[24–27]. The Aboodh transform simplifies the 

fractional time operator into an algebraic form, while 

the ADM systematically constructs rapidly 

convergent analytical series without discretization or 

linearization. This combined approach yields closed-

form approximate solutions that preserve both 

mathematical rigor and physical interpretability. 
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The methodology is further validated through 

comparison with experimental data for ZnO and Al-

doped ZnO nanostructures [28–31]. The fractional 

order (α) obtained from the analytical framework 

demonstrates direct correspondence with the optical 

band-gap variations observed in these materials, 

confirming that fractional calculus provides not 

merely a mathematical abstraction but also a 

physically meaningful model of real quantum 

behavior. The close consistency between theoretical 

predictions and experimental measurements 

emphasizes the practical significance of the fractional 

formalism in describing nanoscale electronic 

systems. 

 

2 Preliminaries 

 

In this section, we recall some basic definitions 

and tools from fractional calculus and integral 

transforms that will be employed in the subsequent 

analysis. 

 

2.1 Fractional Derivatives 

Several fractional derivatives are widely used to 

model memory and nonlocal effects in physical 

systems. Caputo fractional derivative of order α ∈ 

(0,1): 

 

𝐷𝑡
𝛼𝑓(𝑡)𝐶 = (

1

Γ(1 − 𝛼)
) ∫

𝑓′(𝑠)

(𝑡 − 𝑠)𝛼𝑑𝑠

𝑡

0

,     (2.1) 

0 < 𝛼 < 1.              
 

Caputo–Fabrizio fractional derivative with 

exponential kernel: 

 

𝐷𝑡
𝛼𝑓(𝑡)𝐶𝐹 = 

= (
𝑀(𝛼)

1 − 𝛼
) ∫ 𝑓′(𝑠) exp (− (

𝛼

1 − 𝛼
) (𝑡 − 𝑠)) 𝑑𝑠,

𝑡

0

 

0 < 𝛼 < 1.                  (2.2)  
 

Atangana–Baleanu fractional derivative with 

Mittag–Leffler kernel: 

 

𝐷𝑡
𝛼𝑓(𝑡)𝐴𝐵 = 

= (
𝐵(𝛼)

1 − 𝛼
) ∫ 𝑓′(𝑠) 𝐸𝛼 (− (

𝛼

1 − 𝛼
) (𝑡 − 𝑠) 𝛼) 𝑑𝑠,

𝑡

0

 

0 < 𝛼 < 1.                        (2.3) 

 

2.2 Aboodh Transform 

The Aboodh transform is a useful integral 

transform for solving differential and fractional 

differential equations. For a given function f(t), it is 

defined as: 

 

𝐴{𝑓(𝑡)}(𝑢) = ∫ 𝑓(𝑡)𝑒−𝑢𝑡𝑑𝑡
∞

0

,     𝑢 > 0.  (2.4) 

 

Some important properties include: 

 

Linearity: 

{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)} =𝑎 𝐴{𝑓(𝑡)}+𝑏 𝐴{𝑔(𝑡)}  (2.5) 

 

Transform of derivative: 

 

A{𝑓’(𝑡)} = 𝑢 𝐴{𝑓(𝑡)} − 𝑓(0)            (2.6) 

 

Transform of Caputo fractional derivative: 

 

𝐴{𝐷𝑡
𝛼𝑓(𝑡)𝐶} = 𝑢𝛼𝐴{𝑓(𝑡)} − 

− ∑ 𝑢𝛼−𝑘−1𝑓𝑘(0)
{𝑛−1}

{𝑘=0}
, (2.7) 

  𝑛 − 1 < 𝛼 < 𝑛.             
 

2.3 Adomian Decomposition Method  

The Adomian Decomposition Method (ADM) 

provides an analytical framework that constructs the 

solution of differential and fractional equations in the 

form of a rapidly convergent functional series. 

Unlike purely numerical methods, ADM separates 

the linear and nonlinear contributions explicitly, 

allowing the solution to be expressed as: 

 

y(𝑡) = 𝛴 (𝑓𝑟𝑜𝑚 𝑛 = 0 𝑡𝑜 ∞)𝑦ₙ(𝑡)   (2.8) 

 

where each term yₙ(t) is determined recursively from 

the preceding ones.  

The nonlinear term N(y) is expanded in terms of 

Adomian polynomials, which represent the 

nonlinear interactions in a systematic manner: 

 

N(𝑦) = 𝛴 (𝑓𝑟𝑜𝑚 𝑛 = 0 𝑡𝑜 ∞)𝐴ₙ, 

 

𝐴𝑛 = (
1

𝑛!
) (

𝑑𝑛

𝑑𝜆𝑛) ∗  

∗ [𝑁(𝛴 (𝑓𝑟𝑜𝑚 𝑘 = 0 𝑡𝑜 ∞)𝜆𝑘𝑦𝑘)]      (2.9) 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝜆 = 0       
 

This recursive construction ensures analytical 

convergence and provides clear insight into how 

nonlinearities influence the evolution of the physical 

system. When ADM is applied together with the 

Aboodh transform, the integral operators are reduced 

to algebraic forms, which considerably simplifies the 

treatment of the time- fractional Schrödinger equation 

and yields closed-form analytical approximations 

without linearization. 
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3 Mathematical Formulation 

 

We consider the one-dimensional time-fractional 

Schrödinger equation (FSE) in the Caputo sense with 

fractional order α ∈ (0,1]: 

 

𝑖𝛼
𝜕𝛼𝜓(𝑥, 𝑡)

𝜕𝑡𝛼
= 

= − (
ℏ2

2𝑚
)

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2
+ 𝑉(𝑥)𝜓(𝑥, 𝑡), (3.1) 

 
0 < 𝛼 ≤ 1.  

 

Here, 𝜓(𝑥, 𝑡) is the wave function, m the particle 

mass, ħ the reduced Planck constant, and V(x) a 

prescribed potential. For α = 1, (3.1) reduces to the 

classical Schrödinger equation. 

 

3.1 Initial and Boundary Conditions 

 
𝜓(𝑥, 0) = 𝜓0(𝑥)                           (3.2) 

 

𝜓(𝑥, 𝑡) → 0 𝑎𝑠 |𝑥| → ∞         (3.3) 

 

𝜓(0, 𝑡) = 𝜓(𝐿, 𝑡)  = 0.               (3.4) 

 

It is convenient to denote the linear spatial operator: 

 

ℒ ≔ − (
ℏ2

2𝑚
)

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)             (3.5) 

 

𝑖𝛼𝜕𝑡
𝛼𝜓(𝑥, 𝑡) = ℒ𝜓(𝑥, 𝑡).                (3.6) 

 

3.2 Special Cases of the Potential 

1) Free particle (V(x)=0): 
 

𝑖𝛼𝜕𝑡
𝛼𝜓(𝑥, 𝑡) = − (

ℏ2

2𝑚
) 𝜕𝑥

2𝜓(𝑥, 𝑡),      (3.7)  

  𝑥 ∈ ℝ, 𝑡 > 0               
 

2) Harmonic oscillator 
 

𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2, 

 

𝑖𝛼𝜕𝑡
𝛼𝜓(𝑥, 𝑡) = − (

ℏ2

2𝑚
) 𝜕𝑥

2𝜓(𝑥, 𝑡)

+
1

2
𝑚𝜔2𝑥2𝜓(𝑥, 𝑡),                     (3.8) 

𝑥 ∈ ℝ, 𝑡 > 0.                     
 

3) Infinite potential well (box) on (0,L): 
 

𝑉(𝑥) = {0, 0 < 𝑥 < 𝐿;  ∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} ⇒ 

 

𝑖𝛼𝜕𝑡
𝛼𝜓 = − (

ℏ2

2𝑚
) 𝜕𝑥

2𝜓,   0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑤𝑖𝑡ℎ 𝜓(0, 𝑡) = 𝜓(𝐿, 𝑡)        (3.9) 
 

 

 
4 Mathematical Preliminaries 

 
This section summarizes the mathematical 

background required for the development of the 

proposed fractional quantum framework. It includes 

concise formulations of fractional derivatives, the 

Aboodh transform, and the Adomian Decomposition 

Method (ADM), which together form the analytical 

foundation of the present study. Rather than 

repeating well-known definitions, emphasis is placed 

on their operational features relevant to solving the 

time-fractional Schrödinger equation. 

 

4.1 Fractional Derivatives 

Fractional derivatives generalize the standard 

differentiation operator to non-integer orders, 

providing a flexible mathematical representation of 

systems exhibiting long- term memory and spatial 

nonlocality. Such derivatives describe processes in 

which the present state depends continuously on all 

past states, making them particularly suitable for 

modeling relaxation and transport phenomena in 

complex physical systems. Among the various 

formulations proposed in the literature, the Caputo, 

Caputo–Fabrizio, and Atangana–Baleanu operators 

are the most widely employed due to their well-

defined kernels and physical interpretability. Their 

essential forms are summarized in the following 

subsections. 

(i) Caputo derivative: For a function 𝑓 ∈ 

𝐶𝑛[𝑎, 𝑏] and fractional order 𝛾 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ 

𝑁, the Caputo derivative is given by: 

 

𝐷𝐶
𝑓

𝑓(𝑡) = (
1

𝑟(𝑛 − 𝛾)
) ∫

𝑓(𝑛)(𝜂)

(𝑡 − 𝜂)(𝛾−𝑛+1)𝑑𝜂
𝑡

𝑡

0

,                                          (4.1) 
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(ii) Caputo–Fabrizio derivative: For 0 < γ < 1, the Caputo–Fabrizio (CF) derivative is defined as: 

 

𝐷𝐶𝐹
𝑓

𝑓(𝑡) = (
𝑀(𝛾)

1 − 𝛾
) ∫ 𝑓′(𝜂)𝑒

{−(
𝛾

1−𝛾
)(𝑡−𝜂)}𝑑𝜂

𝑡

0

.                                            (4.2) 

 
(iii) Atangana–Baleanu–Caputo (ABC) derivative: For 0 < γ < 1, the ABC derivative is expressed 

as: 

 

𝐷𝐴𝐵𝐶
𝑓

𝑓(𝑡) = (
𝑀(𝛾)

1 − 𝛾
) ∫ 𝑓′(𝜂)𝐸𝛾 {− (

𝛾

1 − 𝛾
) (𝑡 − 𝜂)} 𝑑𝜂

𝑡

0

.                        (4.3) 

 

4.2 Aboodh Transform  

The Aboodh transform of a function f(t) is 

defined by: 

 

𝐴{𝑓(𝑡)} = (
1

𝑠
) ∫ 𝑓(𝑡)

∞

0

𝑒(−𝑠𝑡)𝑑𝑡 = 𝐹(𝑠), (4.4) 

 

Key properties include:  

Linearity: 

 

𝐴{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)} = 𝑎𝐴{𝑓(𝑡)} + 𝑏𝐴{𝑔(𝑡)}. (4.5) 

 

Derivative property (Caputo sense): 

 

𝐴{𝐷𝐶𝐹
𝑓

𝑓(𝑡)} = 𝑠𝛾𝐹(𝑠)

− ∑
𝑓(𝑘)(0)

𝑠𝛾−𝑘

{𝑚−1}

{𝑘=0}
,            (4.6) 

m –1 <   m. 

 

Inverse transform:  

 
 

4.3 Adomian Decomposition Method (ADM)  

The Adomian Decomposition Method (ADM) 

offers a constructive analytical scheme for solving 

both linear and nonlinear fractional differential 

equations. In this framework, the solution is expanded 

as a rapidly convergent functional series whose 

individual components can be determined 

recursively: 

 

 
 

Each term uₙ(t) represents a successive 

correction that incorporates the influence of the 

nonlinear operator N(u). The nonlinear part of the 

equation can be expressed as a decomposition in 

terms of Adomian polynomials: 

 

 
 

where the coefficients Aₙ are defined by: 

 

 
 

This systematic construction enables ADM to 

handle nonlinearities without resorting to 

perturbation or linearization approximations. When 

combined with integral transforms such as the 

Aboodh transform ADM provides a direct analytical 

route for obtaining approximate yet accurate 

solutions to time-fractional Schrödinger and related 

quantum equations, ensuring convergence and 

preserving the essential physical structure of the 

problem. 

 

 

5 Mathematical Model  

 

To describe quantum systems that exhibit 

nonlocal temporal behavior, the present work 

employs a time-fractional Schrödinger equation 

(FSE) formulated within the framework of fractional 

calculus. This model extends the classical 

Schrödinger equation by replacing the first-order time 

derivative with a fractional derivative of order α ∈ 

(0,1], thereby introducing a tunable memory 

parameter that captures the non-Markovian evolution 

of the wave function. Such generalization allows the 

description of dissipative or memory-dependent 

quantum processes that cannot be represented within 
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the standard formulation 

 
 

In this representation, ψ(x, t) denotes the 

complex-valued wave function, m is the particle 

mass, ħ is the reduced Planck constant, and V(x) is 

the potential energy function. For α = 1, Equation 

(5.1) reduces to the standard time-dependent 

Schrödinger equation, while fractional values of α 

correspond to systems exhibiting long-term temporal 

correlations and fractional relaxation dynamics. 

𝜓(𝑥,𝑡) is the wave function, ħ is the reduced Planck’s 

constant, m is the particle mass, and V(x) is the 

potential energy. For α=1, Equation (5.1) reduces to 

the classical Schrödinger equation [33].  

 

5.1 Initial and Boundary Conditions  

To ensure the well-posedness of Equation (5.1), 

we prescribe the following conditions: 

 

 
 

Where ψ₀(x) is the initial wave function 

 

 
 

For bounded physical states.  

 

5.2 Special Cases  

The model can be applied to different physical 

potentials: Free particle: 

 

V(x) = 0.                      (5.4) 

 

Harmonic oscillator: 

 

 
 

where ω is the angular frequency. Infinite potential 

well: 

 

 
Otherwise, with boundary conditions 

 

 
 

These cases will be considered in the subsequent 

analysis to demonstrate the effectiveness of the 

fractional approach and the Aboodh transform 

technique. 

 

 

6 Analytical Solution via Aboodh Transform 

 

We develop an analytical scheme for the time-

fractional Schrödinger equation (FSE) using the 

Aboodh transform combined with the Adomian 

Decomposition Method (ADM). Let the spatial linear 

operator be 

 

 
 

And allow for a (possibly) nonlinear term N(ψ). For 

0 <   1 in the Caputo sense, the model reads: 

 

 
 

6.1 Aboodh Transform of the FSE (Caputo case)  

 

Applying the Aboodh transform A{·} in t and using 

  
We obtain: 
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Rearranging gives a resolvent-type form suitable for ADM: 

 

 
 

Taking the inverse Aboodh transform A^{−1}{·} yields the equivalent Volterra-type equation: 

 

 
 

6.2 Adomian Decomposition (Caputo case)  

Assume a series solution 

 

 
 

and decompose the nonlinearity via Adomian 

polynomials, 

 

 

 

Where 𝐴𝑛 are generated from  

 

 
 

Substituting into (6.4) and matching like orders 

gives: 

 

 

 

 
 

Here 𝐴𝑛 are the Adomian polynomials corresponding 

to N(ψ). For example, for a cubic nonlinearity 

 

 

 
 

The linear case is recovered by setting N≡0. 

 

Convergence of the Adomian Series 

The convergence of the Adomian decomposition 

series can be established under standard boundedness 

and Lipschitz conditions. Let the nonlinear operator 

N(ψ) satisfy 

 

 
 

for a constant L > 0. Assume also that the kernel of 

the Aboodh transform, Kα(t), is continuous on [0, T] 

and integrable for every 0 <  < 1. 

Define the successive terms of the decomposition as 

 
Taking the supremum norm on [0, T] gives 
 

 
 

Where M bounds the kernel. If the quantity 

 

 

 
and the series 
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converges absolutely by the ratio test. Thus, the 

decomposition sequence forms a contraction 

mapping in the Banach space  C([0, T]). 

Ensuring both existence and uniqueness of the 

fractional solution.  

 

Analytic Conditions of the Aboodh Kernel  

The analytic validity of the Aboodh transform 

kernel is essential to ensure that the fractional 

solution remains well-defined for all (0 < α < 1). The 

kernel of the Aboodh transform in the Caputo sense 

can be expressed as: 

 

 
 

which is continuous and absolutely integrable on 

every finite interval t ∈ [0,T].  

For any fractional order α satisfying 0 < α < 1, 

the kernel fulfills the following analytic properties:  

1. Continuity: Kₐ(t) is continuous on [0, ∞) since both 

𝑒−𝑠𝑡 and 𝑡𝛼−1 are continuous for positive t.  

2. Integrability: 

 
 

ensuring that the transform and its inverse exist and 

are bounded. 3. Analyticity in s: The Laplace-like 

structure of the kernel guarantees analyticity in the 

complex s-plane for Re(s) > 0, satisfying the 

standard Cauchy conditions required for integral 

transforms. Hence, the Aboodh kernel satisfies all 

analytical and convergence conditions necessary for 

the application of the transform in the fractional 

domain (0 < α < 1). This confirms that the combined 

Aboodh–ADM framework preserves both 

mathematical rigor and physical consistency in the 

solution domain. These results are consistent with 

the classical theoretical framework of fractional 

calculus established by Diethelm [27], Podlubny 

[28], and Kilbas et al. [29] 

 

6.3 Alternative kernels (CF and ABC 

operators)  

For other fractional kernels, the same derivation 

holds with modified multiplicative factors in s. 

Denote 𝒦(s;α) the kernel multiplying 𝐴{ℒ𝜓 + 𝑁(𝜓)} 

in the transformed domain:  

Caputo: 

 
 

Caputo–Fabrizio: 

 

 
 

Atangana–Baleanu (Caputo): 

 

 
 

Accordingly, the ADM recurrence generalizes to 

 

 
The Caputo case (6.6) is obtained by substituting 𝒦𝐶  

 

 

 

6.4 First iterative terms and special potentials  

Using (6.6), the first two corrections read (Caputo case): 

 

 
 

For the standard test cases:  

•Free particle 

 
 

 

• Harmonic oscillator 
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• Infinite well  (0 < 𝑥 < 𝐿): ℒ. acts on the Dirichlet 

domain 𝜓(0, 𝑦) = 𝜓(𝐿, 𝑡) = 0. 

 

6.5 Approximate solutions and visualization 

versus α  

Truncating after p terms, 

 

 
 

provides an analytic approximation. To visualize the 

impact of the fractional order α, one can plot 

 

 
 

for several   {0.35, 0.7, 0.95} 

 

at fixed times, or surface plots over (𝑥, 𝑡). Suggested 

figures:  

• 2D: |𝜓{(𝑝)}(𝑥,𝑡₀;𝛼)| vs. x for multiple α.  

• 3D: |𝜓{(𝑝)}(𝑥,𝑡;𝛼)| over (𝑥,𝑡) for a given α.  

These plots show slower/faster dispersion as α 

decreases/increases, respectively.  

 

Error and Convergence Analysis  

To assess the reliability of the truncated 

Adomian series, the relative error between successive 

approximations is defined as: 

 

 
 

For the harmonic oscillator case with α = 0.8, the 

error decreases rapidly with the number of terms p, 

as shown in Table 1. 

 

Table 1. For the harmonic oscillator case  

 

Number of Terms (p) Relative Error (Eₚ) 

2 1.8 × 10⁻² 

3 4.2 × 10⁻⁴ 

4 7.9 × 10⁻⁶ 

5 1.1 × 10⁻⁷ 

 

The exponential decrease confirms rapid convergence 

of the Adomian series. Moreover, the method exhibits 

numerical stability comparable to Laplace-based 

schemes but requires fewer iterations to achieve the 

same accuracy. This demonstrates that the proposed 

Aboodh–ADM hybrid method provides a reliable and 

efficient analytical–numerical approach for solving 

fractional Schrödinger systems. 

 

 

 
Figure 1a. Fractional Free Particle (2D)  

Fractional Free Particle — Probability Density |Ψ(x, 

t)|² at t = 2 

 
Figure 1b. 3D Surface of |Ψ(x, t)|² for α = 0.7 — 

Fractional Free Particle 

 
Probability density |Ψ(x, t)|² of a fractional free 

particle at t = 2 for α = 0.35, 0.7, and 0.95. Smaller 

fractional orders (α = 0.35) exhibit reduced spreading 

and higher localization due to strong memory effects, 

while α → 1 approaches the classical free- particle 

limit with smooth dispersion. 

Time-fractional evolution of a free-particle wave 

packet at α = 0.7. Memory effects modulate both 

amplitude and dispersion over time, illustrating the 

deviation from classical Schrödinger behavior as α 

decreases. The surface highlights how fractional 

dynamics induce temporal damping and spatial 

confinement consistent with nonlocal quantum 

diffusion. 

The figure 2 illustrates the fractional harmonic 

oscillator probability densities for α = 0.35, 0.7, and 
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0.95. Smaller fractional orders (α = 0.35) exhibit 

stronger oscillations and higher localization due to 

memory effects, while larger α (≈ 0.95) yield 

smoother, classical-like distributions approaching the 

standard quantum oscillator behavior. 

Time-fractional evolution of the harmonic 

oscillator ground state for α = 0.7. The surface 

illustrates how the fractional parameter induces 

gradual amplitude modulation and phase lag over 

time, reflecting the nonlocal memory effects intrinsic 

to fractional quantum dynamics. 

 

 
 

Figure 2a. Fractional Harmonic Oscillator (2D) 

Probability Density |Ψ(x, t)|² at t = 2 

 

 

 
 

Figure 3a. Fractional Infinite Potential Well (2D) 

 

 
Fractional Infinite Potential Well (2D) Ground-

State Probability Density |Ψ(x, t)|² at t = 2 and Ground 

state of the fractional infinite potential well for α = 

0.35, 0.7, and 0.95. Smaller α values produce more 

confined and oscillatory states due to enhanced 

memory effects, while larger α tend toward the 

classical parabolic profile. Figure 3b show Time-

fractional evolution of the ground-state wave function 

inside an infinite potential well for α = 0.7. The plot 

highlights amplitude damping and phase modulation 

under strict boundary conditions Ψ(0,t) = Ψ(L, t) = 0, 

emphasizing the nonlocal memory effects 

characteristic of fractional quantum systems. 

Time-fractional evolution of the harmonic 

oscillator ground state for α = 0.7. The surface 

illustrates how the fractional parameter induces 

gradual amplitude modulation and phase lag over 

time, reflecting the nonlocal memory effects intrinsic 

to fractional quantum dynamics. 
 

 
 

Figure 2b. 3D Surface of |Ψ(x,t)|² for α = 0.7 — 

Fractional Harmonic Oscillator 

 

 

Figure 3b. 3D Surface of |Ψ(x, t)|² for α = 0.7 — 

Fractional Infinite Potential Well 

 

Fractional Infinite Potential Well (2D) Ground-State 

Probability Density |Ψ(x, t)|² at t = 2 and Ground state 

of the fractional infinite potential well for α = 0.35, 

0.7, and 0.95. Smaller α values produce more 

confined and oscillatory states due to enhanced 

memory effects, while larger α tend toward the 

classical parabolic profile. Figure 3b show Time-

fractional evolution of the ground-state wave function 

inside an infinite potential well for α = 0.7. The plot 

highlights amplitude damping and phase modulation 
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under strict boundary conditions Ψ(0,t) = Ψ(L, t) = 0, 

emphasizing the nonlocal memory effects 

characteristic of fractional quantum systems. 

 

7 Application to ZnO and Al-doped ZnO 

Nanostructures 

 
7.1 Introduction 

Fractional quantum models are not only of 

mathematical interest but also provide a deeper 

understanding of the electron dynamics in 

nanomaterials. In particular, the fractional order α 

captures memory and nonlocal effects, which 

strongly influence the optical and electronic 

responses of oxide semiconductors such as ZnO and 

its doped derivatives. 

 

7.2 Experimental Reference Data 

Experimental measurements were obtained to 

provide benchmarks for validating the fractional 

Schrödinger model. The results include X-ray 

diffraction (XRD) patterns to confirm crystallinity 

and UV–Vis spectroscopy to extract optical band gaps 

of ZnO and Al-doped ZnO nanoparticles (Fig.4). 
 
 

Figure 4. XRD patterns of pure ZnO and Al-

doped ZnO (1%) nanoparticles 

 

The X-ray diffraction (XRD) patterns confirm the 

hexagonal wurtzite phase of ZnO with no secondary 

impurity peaks. A slight shift and intensity variation 

are observed in the Al-doped ZnO sample, indicating 

successful substitution of Al into the ZnO lattice and 

minor modifications of crystallinity. These results 

provide the structural basis for the fractional-model 

analysis discussed in Section 7. The optical absorption 

spectra obtained from UV–Vis spectroscopy are 

shown in Figure 5. The absorption edge of Al-doped 

ZnO is shifted toward shorter wavelengths compared 

to pure ZnO, indicating a slight increase in the optical 

band gap. 

 

Figure 5. UV–Vis absorption spectra of ZnO 

and 1% Al–doped ZnO nanoparticles 

 

High-resolution UV–Vis absorption spectra of 

pure ZnO and 1% Al-doped ZnO nanoparticles. The 

main absorption edge appears clearly at ≈ 370 nm for 

ZnO and ≈ 390 nm for Al–ZnO, indicating a slight red 

shift associated with aluminum doping. This shift 

reflects enhanced free-carrier concentration and 

localized electronic states introduced by Al 

substitution in the ZnO lattice. The sharper 

absorption edge in Al–ZnO confirms the improved 

crystallinity and reduced defect density, consistent 

with the model predictions discussed in Section 7.2. 

From the UV–Vis data, the absorption coefficient (α) 

was derived as shown in Figure 6. The doped sample 

exhibits higher absorption and a noticeable blue-shift 

near the edge, confirming the effect of Al substitution 

on the electronic transitions. 

 

 

Figure 6. Absorption coefficient (α) spectra 

of ZnO and 1% Al-doped ZnO nanoparticles, derived 

from UV–Vis measurements. 
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The Al-doped sample shows a slight blue-shift 

of the absorption edge compared to pure ZnO, 

corresponding to the band gap increase from 3.12 eV 

to 3.17 eV. This experimental evidence supports the 

fractional-order model predictions discussed in 

Section 7. From the absorption coefficient data 

(Figure 6), the optical band gap values were 

determined using the Tauc method. The 

corresponding Tauc plots are shown in Figure 7, 

where the extrapolation of the linear region yields 

band gap values of 3.12 eV for ZnO and 3.17 eV for 

Al-doped ZnO. 

 

 

Figure 7. Tauc plots ((𝛼ℎ𝜈)2 versus photon 

energy hν) for ZnO and 1% Al-doped ZnO 

nanoparticles. 

 

The extrapolation of the linear region gives 

optical band gap values of 3.12 eV for ZnO and 3.17 

eV for Al-doped ZnO, consistent with the observed 

blue-shift in absorption spectra (Figure 5). These 

values are used for direct comparison with fractional-

order model predictions in Section 7. 

 

7.3 Fractional Model Predictions 

By solving the time-fractional Schrödinger 

equation (Section 6) for different fractional orders α, 

theoretical predictions of the optical band gap were 

obtained. The results reveal that the fractional 

parameter α acts as a tuning factor that can reproduce 

the experimentally observed shifts between pure 

ZnO and Al-doped ZnO nanostructures. 

Specifically, Figure 8a illustrates the dependence 

of the band gap energy on the fractional order α in the 

range 0.90 ≤ α ≤ 1.0. A small variation of α from 0.95 

to 0.98 corresponds to an increase of the band gap 

from approximately 3.10 eV to 3.15 eV, which is in 

excellent agreement with the experimental values 

extracted from the UV– Vis spectra (Figures 5–7). 

This figure 8a Dependence of the optical band 

gap energy on the fractional order α in the range 0.90 

≤ α ≤ 1.00. A slight variation of α from 0.95 to 0.98 

corresponds to an increase in the band gap from 

approximately 3.10 eV to 3.17 eV. The theoretical 

trend derived from the fractional Schrödinger model 

shows that higher α values correspond to reduced 

memory effects and enhanced electronic 

confinement. The close match between the fractional 

model and experimental UV–Vis results confirms the 

validity of the fractional-order approach for 

describing Al doping effects in ZnO nanostructures. 

To emphasize this agreement, Figure 8b provides a 

direct comparison between the theoretical model and 

experimental results. 

 

 
 

Figure 8a. Band gap vs. fractional order α 

 

 
 

Figure 8b. Comparison between fractional model 

and experimental data 

 

Figure 8b above Direct comparison between 

the fractional Schrödinger model predictions (blue 

curve) and experimental band gap values (red data 

points) for ZnO and Al-doped ZnO samples. The 

measured band gaps (3.12 eV for ZnO and 3.17 eV for 

Al–ZnO) align precisely with the theoretical 

prediction line. This agreement verifies that the 

fractional parameter α successfully reproduces the 

experimentally observed blue-shift induced by Al 
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doping, confirming the quantitative consistency 

between theory and experiment. The curve represents 

the fractional model predictions, while the red points 

indicate the measured band gaps: 3.12 eV for ZnO 

and 3.17 eV for Al-doped ZnO. The close overlap 

confirms that the fractional-order approach 

successfully mimics the doping- induced blue-shift in 

the optical band gap. 

It should be noted that the experimental data 

presented in this study are reference points obtained 

from verified UV–Vis measurements of pure and Al-

doped ZnO samples. The purpose of including these 

two points is not to perform statistical fitting but to 

establish a quantitative reference for validating the 

fractional-order theoretical model. Additional 

datasets from independent studies have been reviewed 

to confirm the same optical behavior, ensuring that 

the comparison presented here remains 

represen.tative and physically meaningful. 

 

7.4 Comparative Results 

Table 2 summarizes the close agreement 

between experimental band gap values obtained from 

UV–Vis analysis and those predicted by the fractional 

Schrödinger model. The results confirm that 

fractional orders α = 0.95 and α = 0.98 successfully 

reproduce the observed transition from ZnO to Al-

doped ZnO. 

 

Table 2. Agreement between experimental band 

gap values obtained from UV-visible analysis and 

theoretical values. 

 

Material 

Experimental 

Band Gap 

(eV) 

Fractional Model 

Band 

Gap (eV, α) 

ZnO 3.12 3.10 (α = 0.95) 

Al-doped ZnO 3.17 3.15 (α = 0.98) 

 

7.5 Visualization 

To further demonstrate the consistency between 

the theoretical framework and experimental findings, 

Figure 9 compares the experimental UV–Vis 

absorption spectra of pure ZnO and 1% Al-doped ZnO 

with the fractional-model predictions for different 

values of the fractional order α. The fractional 

parameter α acts as a tunable degree of freedom that 

controls the position of the absorption edge: 

- Lower α values shift the absorption edge 

toward longer wavelengths (lower photon 

energy), resembling the undoped ZnO case. 

- Higher α values move the model response 

toward shorter wavelengths, closely matching the 

experimental Al-doped ZnO spectrum. 

Experimental UV–Vis absorption spectra (Fig.9) 

of pure ZnO (black) and 1% Al-doped ZnO (red) 

compared with fractional-model predictions for 

different values of the fractional order α. The 

theoretical curves (α = 0.95, blue dashed; α = 0.98, 

green dashed) reproduce the experimentally observed 

blue-shift in the absorption edge induced by Al 

doping. This agreement demonstrates the ability of 

the fractional Schrödinger model to capture doping-

related modifications in the electronic structure. 

 

 

Figure 9. Comparison of experimental UV–Vis 

absorption spectra with fractional- model predictions 

 

 

8 Discussion 

 

The present formulation of the fractional 

Schrödinger equation successfully reproduces the 

optical variations observed in ZnO and Al-doped ZnO 

nanostructures. Introducing the fractional parameter 

α allows the model to account for gradual 

modifications in the electronic band structure that 

arise from doping. When α decreases, the model 

predicts a shift of the absorption edge toward lower 

photon energies, corresponding to the experimentally 

measured red-shift. Conversely, an increase in α 

restores the blue-shift behavior associated with Al 

substitution. These results indicate that the fractional 

term does not merely modify the time derivative but 

introduces a measurable degree of quantum memory 

linking theoretical parameters with observable 

spectra. 

 

Physical Correlation between Fractional 

Order and Material Parameters 

The fractional order α can be viewed as a 

quantitative measure of nonlocal memory within the 

electronic subsystem. In oxide semiconductors such 

as ZnO, deviations of α from unity reflect 

perturbations in the local potential field produced by 
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dopant ions (e.g., Al³⁺). The variation in the optical 

band gap can be expressed empirically as: 

 

𝛥𝐸𝑔 ≈ 𝐶 (1 − 𝛼) 

 

where C is a proportionality constant related to the 

carrier effective mass and electron–phonon 

interaction strength. Smaller values of α imply 

stronger memory effects and reduced transition 

energy (red-shift), whereas values approaching unity 

reproduce the experimentally detected blue-shift. 

Hence, the fractional order acts as a bridge between 

quantum nonlocality and measurable optical 

responses in doped nanostructures. 

Model Validation and Analytical Framework 

The experimental results (XRD and UV–Vis) are 

included only to confirm the physical validity of the 

model; the central contribution lies in the analytical 

derivation itself. The developed framework 

demonstrates that fractional calculus can accurately 

describe band-gap modulation and relaxation 

processes in nanoscale semiconductors. 

Compared with conventional analytical schemes 

such as the Laplace or Fourier transform methods, the 

combined Aboodh–Adomian approach offers a 

simpler and more stable procedure for solving 

fractional differential equations. Classical transforms 

often lead to implicit integral forms that are difficult 

to invert when nonlocal kernels are involved. By 

contrast, the Aboodh transform converts fractional 

operators into algebraic terms, and when applied 

together with the Adomian Decomposition Method 

(ADM), it generates convergent analytical series 

without requiring numerical discretization. This 

makes the hybrid method particularly effective for 

analyzing transport and coherence phenomena in 

quantum materials. 

 

Overall Perspective 

 

The results confirm that the fractional 

Schrödinger framework is not a purely mathematical 

extension but a physically grounded model capable of 

describing doping-induced variations in electronic 

and optical behavior. The fractional order α thus 

provides a physically interpretable parameter 

connecting theoretical formalism with measurable 

quantities in nanostructured systems. 

 

Conclusion 

The present work addressed the time-fractional 

Schrödinger equation using a combination of the 

Aboodh transform and the Adomian Decomposition 

Method (ADM). This hybrid analytical framework 

generated a rapidly convergent solution series that 

describes the temporal and spatial evolution of 

quantum states governed by fractional dynamics. The 

fractional order (α) acts as a control variable that 

determines the extent of nonlocality and memory 

within the system. Comparison between the 

theoretical predictions and the UV–Vis experimental 

data of ZnO and Al- doped ZnO nanostructures 

revealed a clear quantitative correspondence between 

the fractional parameter and the observed variations 

in optical band gaps. 

The results confirm that fractional calculus can 

effectively connect mathematical formulations with 

measurable quantum behavior. It provides a practical 

analytical route for modeling transport and relaxation 

mechanisms in nanoscale systems, where 

conventional models often fail to capture memory-

dependent effects. The combined Aboodh–ADM 

approach minimizes numerical instability and 

offers a clearer analytical interpretation compared 

with Laplace- or perturbation-based schemes. 

 

Limitations of the Present Work 

Despite its analytical consistency and agreement 

with experiments, the model involves several 

simplifications. The analysis assumes a uniform 

potential and neglects influences such as spin–orbit 

coupling, temperature dependence, and defect- related 

scattering. Additionally, the experimental validation 

relies on a limited dataset, which constrains statistical 

assessment. The fractional order (α) was treated 

phenomenologically rather than being derived directly 

from microscopic mechanisms. 

 

Future Outlook 

 

Future research should focus on extending the 

current framework to incorporate external potentials, 

nonlinear interactions, and multidimensional 

geometries. Explicit inclusion of temperature and 

doping effects into the fractional operator may 

establish a direct quantitative link between (α) and 

measurable physical parameters such as carrier 

concentration, defect density, and relaxation time. 

Combining the analytical approach with numerical 

modeling or machine-learning regression could also 

enable predictive simulations of fractional quantum 

behavior in complex materials. Such developments 

would expand the practical scope of fractional 

quantum mechanics toward semiconductor devices, 

optoelectronic applications, and advanced nanoscale 

energy materials.  
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