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Understanding quantum systems with intrinsic memory and spatial nonlocality requires
mathematical models beyond the limits of classical calculus. In this work, the one-dimensional
time-fractional Schrodinger equation is examined through a hybrid analytical framework
combining the Aboodh transform with the Adomian Decomposition Method. This formulation
enables the reconstruction of the wave function as a rapidly convergent analytical series. The
fractional order (a) appears as a physically significant quantity that influences both the energy
spectrum and the temporal evolution of quantum states. The theoretical outcomes are compared
with optical band-gap variations observed experimentally in ZnO and Al-doped ZnO
nanostructures, demonstrating that the fractional model provides a coherent correspondence
between theory and measurable quantum behavior. Furthermore, the proposed approach
exhibits superior stability and reduced computational effort compared with traditional Laplace
and Fourier schemes, making it adaptable to a wide range of fractional quantum models.
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Analytical solution of the time-fractional Schrodinger equation via decomposition methods and series expansions

AHanutuyeckoe pelleHune ypasHeHua LpeanHrepa ¢ ApobHOM YacTbio NO BPEMEHW C
MOMOLLbI0 METO10B Pa3/I0XKEHNUA U PAAOBLIX Pa3/I0KeHUI

MMOHMMaHME KBAHTOBbIX CUCTEM C BHYTPEHHEM MNamATbld UM MPOCTPAHCTBEHHOM
HE/NIOKa/IbHOCTbIO TpebyeT mMaTemMaTU4YecKMx Moaenei, BbIXOAALIMX 338 PAaMKW KJacCUYeCcKoro
ncumcneHma. B naHHon pabote ogHomepHoe ypaBHeHue LUpéauHrepa ¢ ApoOHOM YacTbio Mo
BPEMEHW WUCCAedyeTca C MNOMOWb MBPUAHON aHAMTUYECKOM MOAEeNN, COYeTatoLLen
npeobpasoBaHne Abyaxa ¢ MEeToAoM passioxKeHua AgommnaHa. 3ta GopMyaMpOBKa No3BoAET
PEKOHCTPYMPOBATb BOJIHOBYIO YHKLMIO B BUAE ObICTPO CXOAALErocs aHaAMTUYECKOro psaaa.
OpobHbI NopaaoK (a) BbICTyNaeT B KayecTBe GDU3NYECKM 3HAYMMOMN BENMYMHBI, BAMAIOLEN KaK
Ha 3HEepreTMYecKMin CNeKkTp, TaK M Ha BPEMEHHYIO 3BOMIOLUMIO KBAHTOBbIX COCTOAHWM.
TeopeTuyeckme  pesynbTaTbl  CPaABHMBAOTCA C  3KCMEPUMEHTanbHO  HabatoaaembiMm
M3MEHEHMAMM ONTMYECKON LWIMPUHBbI 3aNpPeLLeHHOM 30HbI B HaHOCTpYKTypax ZnO u ZnO,
nermpoBaHHbiX Al, 4To AeMoHCcTpupyeT, 4To ApobHas modenb obecneymBaeT CorflacoBaHHOe
COOTBETCTBME MeXKOY TEOPMEN U U3IMEPUMbIM KBAHTOBbIM MnoBedeHnem. Kpome TOro,
NPeafioXKeHHbIM  NoAxosd AeMOHCTPUPYET  MPEeBOCXOAHYID  CTabuAbHOCTL M MeHbline
BbIYMC/IMTE/IbHbIE 3aTPaTbl MO CPABHEHMIO C TPAAMUMOHHbIMKU cxemamm Jlannaca n Pypbe, YTO

AenaetT ero aganTnmpyemMmbiMm K LUMPOKOMY CNEKTPY ,D,pO6HbIX KBaHTOBbIX MO,CI,GJ'IEIL/'I.

Kniouesble cnosa:

aHaAUTMYeckoe [apobHOe MoaenMpoBaHune, aApobHoe ypaBHeHWe

LpéanHrepa, He/NIOKaibHaA KBAaHTOBAA MNaMATb, METOL Pa3/IoKeHWA ALOMMAHA, aHaIMTUYeCKoe

[POBHOE MOJENMPOBAHNE MEXAHNKN.

1. Introduction

The extension of quantum mechanics into the

fractional domain offers a deeper understanding of
systems governed by memory, dissipation, and long-
range temporal correlations that cannot be captured
by standard formulations.
Fractional calculus provides an extended
mathematical language capable of describing
physical systems governed by memory and nonlocal
interactions [ 1-4]. Unlike the traditional integer-
order  formulations, fractional derivatives
introduce a continuous-order differentiation that
captures intermediate dynamical states between
purely local and fully diffusive regimes [5,6]. Such an
approach allows a more realistic description of
processes where the system’s response depends not
only on its current state but also on its entire
evolution history.

Over the last decade, fractional operators have
proven particularly effective in modeling anomalous
diffusion, viscoelastic relaxation, and complex
transport phenomena observed in condensed matter
and quantum systems [7—10]. In quantum mechanics,
the fractional extension of the Schrodinger
framework has opened new perspectives for
exploring non-Markovian evolution and long-range
temporal correlations in wave dynamics [11-13].
This formulation generalizes the standard time-
dependent Schrodinger equation by introducing a
fractional-order derivative that regulates the rate of
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probability flow in time, thereby controlling the
extent of quantum memory within the system
[14,15].

The time-fractional Schrodinger equation
(TFSE) thus serves as a bridge between classical
quantum dynamics and fractional memory effects,
enabling continuous transition from Markovian to
non-Markovian behavior [16,17]. Despite its
conceptual advantages, obtaining analytical
solutions of the TFSE remains a major challenge
because of the inherent nonlocality of fractional
operators and the complexity of their integral kernels
[18-20]. Standard analytical tools such as Laplace
and Fourier transforms, or iterative perturbation
techniques, often yield implicit integral
representations or require heavy numerical
computation to approximate the temporal behavior
[21-23].

To overcome these limitations, the present
study employs the Aboodh transform in conjunction
with the Adomian Decomposition Method (ADM)
[24-27]. The Aboodh transform simplifies the
fractional time operator into an algebraic form, while
the ADM systematically constructs rapidly
convergent analytical series without discretization or
linearization. This combined approach yields closed-
form approximate solutions that preserve both
mathematical rigor and physical interpretability.
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The methodology is further wvalidated through
comparison with experimental data for ZnO and Al-
doped ZnO nanostructures [28—31]. The fractional
order (o) obtained from the analytical framework
demonstrates direct correspondence with the optical
band-gap variations observed in these materials,
confirming that fractional calculus provides not

2 Preliminaries

In this section, we recall some basic definitions
and tools from fractional calculus and integral
transforms that will be employed in the subsequent
analysis.

2.1 Fractional Derivatives

Several fractional derivatives are widely used to
model memory and nonlocal effects in physical
systems. Caputo fractional derivative of order a €

(0,1):

L\
DEf(D)E :( ) f , (21
f®) rl-a)/ ), (t—s)*ds (21)
O0<a<l.
Caputo—Fabrizio fractional derivative with
exponential kernel:
D& f(t)CF
M (04) ,
1—a -[f(s)exp ( )(t—s))ds
0<ax<l. (2.2)
Atangana—Baleanu fractional derivative with

Mittag—Leffler kernel:

f FOE,

0<a<1

D& f (t) AB _—
B (a)

1—a

)(t—s) a)
(2.3)
2.2 Aboodh Transform
The Aboodh transform is a useful integral
transform for solving differential and fractional

differential equations. For a given function f{¥), it is
defined as:

A{f(O)}w) = foof(t)e‘“tdt, u>0.(2.4)
0

Some important properties include:

Linearity:
{af(t) + bg(0)} =a A{f(O)}+b A{g(D)} (2.5)

merely a mathematical abstraction but also a
physically meaningful model of real quantum
behavior. The close consistency between theoretical
predictions and experimental = measurements
emphasizes the practical significance of the fractional

formalism in describing nanoscale electronic
systems.
Transform of derivative:

A{f ) = wA{f(O)) - f(0) (2.6)

Transform of Caputo fractional derivative:

ADDEf(O} = u®A{f (D)} -

(n-1}
_ Z u
(=0}

n—-1<a<n.

RELfE0), (2.7)

2.3 Adomian Decomposition Method

The Adomian Decomposition Method (ADM)
provides an analytical framework that constructs the
solution of differential and fractional equations in the
form of a rapidly convergent functional series.
Unlike purely numerical methods, ADM separates
the linear and nonlinear contributions explicitly,
allowing the solution to be expressed as:

()= X (fromn =0 to ©o)y.(t) (2.8)
where each term y,(f) is determined recursively from
the preceding ones.

The nonlinear term N(y) is expanded in terms of

Adomian polynomials, which represent the
nonlinear interactions in a systematic manner:

Ny)= X (fromn =0 to ©)A,,

=) (a)

«[N(Z (fromk = 0to )%y, )]  (2.9)
evaluated at A = 0
This recursive construction ensures analytical

convergence and provides clear insight into how
nonlinearities influence the evolution of the physical
system. When ADM is applied together with the
Aboodh transform, the integral operators are reduced
to algebraic forms, which considerably simplifies the
treatment of the time- fractional Schrédinger equation
and yields closed-form analytical approximations
without linearization.

13
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3 Mathematical Formulation

We consider the one-dimensional time-fractional
Schrodinger equation (FSE) in the Caputo sense with

fractional order o € (0,1]:

2 0%YP(x, 1)
l —
ot® 2\ 52
= _ <h_> 0% 6) + V()Y (x, t),(3.1)

2m 0x2

0<ac<l.

Here, Y (x,t) is the wave function, m the particle
mass, % the reduced Planck constant, and V(x) a
prescribed potential. For a =1, (3.1) reduces to the
classical Schrodinger equation.

3.11nitial and Boundary Conditions

P(x,0) = Po(x) (3.2)
Y(x,t) —> 0as |x| — © (3.3)
Y(0,t) = Y(L,t) = 0. (3.4

It is convenient to denote the linear spatial operator:

h%\ 92
L= - <ﬁ>ﬁ + V(X) (35)

4 Mathematical Preliminaries

This section summarizes the mathematical
background required for the development of the
proposed fractional quantum framework. It includes
concise formulations of fractional derivatives, the
Aboodh transform, and the Adomian Decomposition
Method (ADM), which together form the analytical
foundation of the present study. Rather than
repeating well-known definitions, emphasis is placed
on their operational features relevant to solving the
time-fractional Schrodinger equation.

4.1 Fractional Derivatives

Fractional derivatives generalize the standard
differentiation operator to non-integer orders,
providing a flexible mathematical representation of
systems exhibiting long- term memory and spatial

108y (x, t) = L(x, t). (3.6)

3.2 Special Cases of the Potential
1) Free particle (¥(x)=0):
2

“0gp(, ) = — (h

2m

)@?lp(x, t), GB.7)
xERt>0

2) Harmonic oscillator

1
V(x) = Emwzxz,

2

2m

%95 (x, 6) = — (h )a,%w(x, 0

1
+ Emwzlep(x, t),
x€ER,t>0.

(3.8)

3) Infinite potential well (box) on (0,L):

V(x) ={0,0 < x < L; o, otherwise} =

hZ

with (0,t) =y (L,t) (3.9)

nonlocality. Such derivatives describe processes in
which the present state depends continuously on all
past states, making them particularly suitable for
modeling relaxation and transport phenomena in
complex physical systems. Among the various
formulations proposed in the literature, the Caputo,
Caputo—Fabrizio, and Atangana—Baleanu operators
are the most widely employed due to their well-
defined kernels and physical interpretability. Their
essential forms are summarized in the following
subsections.

(1) Caputo derivative: For a function f €
C"[a, b] and fractional ordery € (n—1,n),n €
N, the Caputo derivative is given by:

e (L [P
01 ® = (), Tt

14

(4.1)
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(i1) Caputo—Fabrizio derivative: For 0 <y < 1, the Caputo—Fabrizio (CF) derivative is defined as:

DLf () = (T%?)fo f’(n)e{‘(ﬁ)@—n)}dﬂ.

(4.2)

(ii1) Atangana—Baleanu—Caputo (ABC) derivative: For 0 <y < 1, the ABC derivative is expressed

as:

Dfacf(® = (’f’%@) | s (- (7) ¢ - mjan

4.2 Aboodh Transform
The Aboodh transform of a function f(t) is
defined by:

1 [00]
Ar@y = ;) fo £(©) e=S0dt = F(s), (44)

Key properties include:
Linearity:

A{af(t) + bg()} = aA{f ()} + bA{g(D)}. (4.5)

Derivative property (Caputo sense):

A{D{Ff(t)} = sYF(s)

Inverse transform:

f(t) = A7WFE} (4.7)

4.3 Adomian Decomposition Method (ADM)
The Adomian Decomposition Method (ADM)
offers a constructive analytical scheme for solving
both linear and nonlinear fractional differential
equations. In this framework, the solution is expanded
as a rapidly convergent functional series whose

individual components can be determined
recursively:
5 Mathematical Model

To describe quantum systems that exhibit
nonlocal temporal behavior, the present work
employs a time-fractional Schrédinger equation
(FSE) formulated within the framework of fractional
calculus. This model extends the classical
Schrédinger equation by replacing the first-order time

(4.3)

(e a]

u(®)= ) u(®) (48)

0

Each term u,(f) represents a successive
correction that incorporates the influence of the
nonlinear operator M(u). The nonlinear part of the
equation can be expressed as a decomposition in
terms of Adomian polynomials:

Nw = )Y A, (4.9)
2
where the coefficients A, are defined by:

1\ /dn o
An = (E) (ﬁ)N(Z{ho]l we )lpmoy (4.10)

This systematic construction enables ADM to
handle nonlinearities  without resorting to
perturbation or linearization approximations. When
combined with integral transforms such as the
Aboodh transform ADM provides a direct analytical
route for obtaining approximate yet accurate
solutions to time-fractional Schrodinger and related
quantum equations, ensuring convergence and
preserving the essential physical structure of the
problem.

derivative with a fractional derivative of order a €
(0,1], thereby introducing a tunable memory
parameter that captures the non-Markovian evolution
of the wave function. Such generalization allows the
description of dissipative or memory-dependent
quantum processes that cannot be represented within

15
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the standard formulation

AN (3m) 940

ate

In this representation, wy(x, ¢) denotes the
complex-valued wave function, m is the particle
mass, h is the reduced Planck constant, and V(x) is
the potential energy function. For o = 1, Equation
(5.1) reduces to the standard time-dependent
Schrodinger equation, while fractional values of o
correspond to systems exhibiting long-term temporal
correlations and fractional relaxation dynamics.
Y(x,t) is the wave function, h is the reduced Planck’s
constant, m is the particle mass, and V(x) is the
potential energy. For =1, Equation (5.1) reduces to
the classical Schrodinger equation [33].

5.1 Initial and Boundary Conditions

To ensure the well-posedness of Equation (5.1),
we prescribe the following conditions:

P(x,0) = Po(x) (5.2)
Where yo(x) is the initial wave function
Y(x,t) > 0 as|x| » o

(5.3)

For bounded physical states.

6 Analytical Solution via Aboodh Transform
We develop an analytical scheme for the time-
fractional Schrodinger equation (FSE) using the
Aboodh transform combined with the Adomian

Decomposition Method (ADM). Let the spatial linear
operator be

i« DI y(x,t) =

6.1 Aboodh Transform of the FSE (Caputo case)

Applying the Aboodh transform A{-} in t and using

16

Ly t) + N, 1), P(x,0) =1he(x)

922 + V@Y(xt), 0 < a <1 (51)

5.2 Special Cases
The model can be applied to different physical
potentials: Free particle:
(x)=0. (5.4)

Harmonic oscillator:

V(x) = (%) mw?x?  (5.5)

where o is the angular frequency. Infinite potential
well:

Vix)=0for0 < x < LandV(x) = o (5.6)

Otherwise, with boundary conditions
Y(0,8) = (L) =0

These cases will be considered in the subsequent
analysis to demonstrate the effectiveness of the
fractional approach and the Aboodh transform
technique.

L:= + Vix)

hZ 62
- (m) Pre
And allow for a (possibly) nonlinear term N(y). For
0 <a <1 in the Caputo sense, the model reads:

(6.1)

A {DC{&,C} 'JJ} = s* A{y} - sff—oa} (for0<a<1)

We obtain:
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i%|s*¥(s,x)—

Po(x)

S{Z—a}

= LY(s,x) + AINW)}(s,x) (6.2)

Rearranging gives a resolvent-type form suitable for ADM:

Wis,x) = L2+ 9 sCA [ Lw(sx) + AN 0] (6.3)

Taking the inverse Aboodh transform A™{—1}{-}

yields the equivalent Volterra-type equation:

Y t) = o0 + iTD A [ alLy + N () (64)

6.2 Adomian Decomposition (Caputo case)
Assume a series solution

Y = L) Yn

and decompose the nonlinearity via Adomian
polynomials,

N@W) = Zi=o) An

Y13 (x, 1)

Here A, are the Adomian polynomials corresponding
to N(y). For example, for a cubic nonlinearity

N@) = gll[}lw,flg = 9|1p0|2 Yo,

Ay = gQIol* Yy + Y§yy) ,etc

The linear case is recovered by setting N=0.

Convergence of the Adomian Series

The convergence of the Adomian decomposition
series can be established under standard boundedness
and Lipschitz conditions. Let the nonlinear operator
N(vy) satisfy

INGpy) — Nl < Ly — ol

for a constant L > 0. Assume also that the kernel of
the Aboodh transform, Ka(t), is continuous on [0, T]
and integrable for every 0 <o < 1.

Where An are generated from

{¥it=0)

Substituting into (6.4) and matching like orders

gives:

1/Jtl(x,t) = Po(x) (6.5)

= l-a A{‘l}{s{"“}A{Llpn(x,t) + Apxn}} n =0 (6.6)

Define the successive terms of the decomposition as

t

Una(®) = [ Kalt = DIy + 4,0ldn
Taking the supremum norm on [0, T] gives

1,1l = M(ILI + L) fOTIK’a(T)IdT llWnll
Where M bounds the kernel. If the quantity

g = MQIL] + L) f Ka(D)| dr < 1

"lpn+1”
Then———— < 1
gl = 1
and the series
Y
n=0

17



Analytical solution of the time-fractional Schrodinger equation via decomposition methods and series expansions

converges absolutely by the ratio test. Thus, the
decomposition sequence forms a contraction
mapping in the Banach space C([0, T7).

Ensuring both existence and uniqueness of the
fractional solution.

Analytic Conditions of the Aboodh Kernel

The analytic validity of the Aboodh transform
kernel is essential to ensure that the fractional
solution remains well-defined for all (0 <a < 1). The
kernel of the Aboodh transform in the Caputo sense
can be expressed as:

ta—l

Ka(t) = e=st - e

which is continuous and absolutely integrable on
every finite interval t € [0,T].
For any fractional order a satisfying 0 < a < 1,
the kernel fulfills the following analytic properties:
1. Continuity: Ka(t) is continuous on [0, ) since both
e—st and ta—1 are continuous for positive t.
2. Integrability:

1

Iy IK.@®)]dt = Gr@) < ®

ensuring that the transform and its inverse exist and
are bounded. 3. Analyticity in s: The Laplace-like
structure of the kernel guarantees analyticity in the
complex s-plane for Re(s) > 0, satisfying the
standard Cauchy conditions required for integral
transforms. Hence, the Aboodh kernel satisfies all
analytical and convergence conditions necessary for
the application of the transform in the fractional
domain (0 < a < 1). This confirms that the combined

6.4 First iterative terms and special potentials

Aboodh—ADM  framework  preserves  both
mathematical rigor and physical consistency in the
solution domain. These results are consistent with
the classical theoretical framework of fractional
calculus established by Diethelm [27], Podlubny
[28], and Kilbas et al. [29]

6.3 Alternative kernels (CF and ABC
operators)

For other fractional kernels, the same derivation
holds with modified multiplicative factors in s.
Denote K(s;a) the kernel multiplying A{) + N(i)}
in the transformed domain:

Caputo:
Kesy = i09st% (6.7)
Caputo—Fabrizio:
. [s?(1—a)+ as]
Kep(sia) = i - — (68)
Atangana—Baleanu (Caputo):
l—a + ast™@ ]
cq) = jl-ab . [
‘?{ABC (S, Of) L M(a') (69)

Accordingly, the ADM recurrence generalizes to

Yiner) = ATHK(s;a) - A{LY, + Ay} ).

The Caputo case (6.6) is obtained by substituting K¢

Using (6.6), the first two corrections read (Caputo case):

P, t) =

Pa(x,t) =

For the standard test cases:
Free particle

(veo = () mor?) i = -(35) 7

18

(9 ACY (D ALy + Ag))

(6.10)

i ACY (D A Ly, + A} (6.11)

2m ) ax?

2 2
V(x)=0)L = —(h—) 0

» Harmonic oscillator

+ (%)'rrm)zx2



Montasir Salman Tayfor

¢ Infinite well (0 < x < L): L. acts on the Dirichlet
domain ¥ (0,y) = Y (L, t) = 0.

6.5 Approximate solutions and visualization
versus
Truncating after p terms,

PP, t; @) = anzo} Yo(x, t;a)

provides an analytic approximation. To visualize the
impact of the fractional order a, one can plot

|¢,[(p)](x’ t; CIf)|

for several a € {0.35,0.7, 0.95}

at fixed times, or surface plots over (x, t). Suggested
figures:

* 2D: [pi®(x,to;a)| vs. x for multiple a.

* 3D: ! @Y (x,t;@)| over (x,t) for a given a.
These plots show slower/faster dispersion as o
decreases/increases, respectively.

Error and Convergence Analysis
To assess the reliability of the truncated
Adomian series, the relative error between successive

1.2
1.0

0.8

W(x,0))?

0.4

0.2

0.0

-10.0 =7.5 =50 =25 0.0 2.5 5.0 7.5 10.0

Figure 1a. Fractional Free Particle (2D)
Fractional Free Particle — Probability Density |¥(x,
t)Patt=2

Probability density |¥(x, t)]* of a fractional free
particle at ¢ = 2 for a = 0.35, 0.7, and 0.95. Smaller
fractional orders (a = 0.35) exhibit reduced spreading
and higher localization due to strong memory effects,
while oo — 1 approaches the classical free- particle
limit with smooth dispersion.

Time-fractional evolution of a free-particle wave
packet at o = 0.7. Memory effects modulate both

approximations is defined as:

|+ G, 6) = Py, 1)
o (x, )]

Ep(t) =

For the harmonic oscillator case with a = 0.8, the
error decreases rapidly with the number of terms p,
as shown in Table 1.

Table 1. For the harmonic oscillator case

Number of Terms (p)  Relative Error (E;)
2 1.8 x 1072
3 4.2 x 10"
4 7.9 x10°¢
5 1.1 x 107

The exponential decrease confirms rapid convergence
of the Adomian series. Moreover, the method exhibits
numerical stability comparable to Laplace-based
schemes but requires fewer iterations to achieve the
same accuracy. This demonstrates that the proposed
Aboodh—ADM hybrid method provides a reliable and
efficient analytical-numerical approach for solving
fractional Schrodinger systems.

[¥(x 9

0.4
0.2

0.0

1 o 5—562‘
0 -100"

Figure 1b. 3D Surface of |[¥(x, t)]? fora =0.7 —
Fractional Free Particle

amplitude and dispersion over time, illustrating the
deviation from classical Schrédinger behavior as o
decreases. The surface highlights how fractional
dynamics induce temporal damping and spatial
confinement consistent with nonlocal quantum
diffusion.

The figure 2 illustrates the fractional harmonic
oscillator probability densities for o = 0.35, 0.7, and

19



Analytical solution of the time-fractional Schrodinger equation via decomposition methods and series expansions

0.95. Smaller fractional orders (o = 0.35) exhibit
stronger oscillations and higher localization due to
memory effects, while larger a (= 0.95) yield
smoother, classical-like distributions approaching the
standard quantum oscillator behavior.

Time-fractional evolution of the harmonic
oscillator ground state for o = 0.7. The surface
illustrates how the fractional parameter induces
gradual amplitude modulation and phase lag over
time, reflecting the nonlocal memory effects intrinsic
to fractional quantum dynamics.

1.6

Figure 2a. Fractional Harmonic Oscillator (2D)
Probability Density [P(x, t)? att=2

1.2

0.8

0.6

|W(ix,t)|?

0.4

0.2

0.0

Figure 3a. Fractional Infinite Potential Well (2D)

Fractional Infinite Potential Well (2D) Ground-
State Probability Density |'\Y(x, t)|? att=2 and Ground
state of the fractional infinite potential well for o =
0.35, 0.7, and 0.95. Smaller o values produce more
confined and oscillatory states due to enhanced
memory effects, while larger a tend toward the
classical parabolic profile. Figure 3b show Time-
fractional evolution of the ground-state wave function
inside an infinite potential well for o = 0.7. The plot
highlights amplitude damping and phase modulation
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under strict boundary conditions ¥(0,t) = W(L, t) =0,
emphasizing the nonlocal memory effects
characteristic of fractional quantum systems.

Time-fractional evolution of the harmonic
oscillator ground state for o = 0.7. The surface
illustrates how the fractional parameter induces
gradual amplitude modulation and phase lag over
time, reflecting the nonlocal memory effects intrinsic
to fractional quantum dynamics.
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Figure 3b. 3D Surface of |¥(x, t)]* fora =0.7 —
Fractional Infinite Potential Well

Fractional Infinite Potential Well (2D) Ground-State
Probability Density |'Y(x, t)]* att =2 and Ground state
of the fractional infinite potential well for o = 0.35,
0.7, and 0.95. Smaller o values produce more
confined and oscillatory states due to enhanced
memory effects, while larger o tend toward the
classical parabolic profile. Figure 3b show Time-
fractional evolution of the ground-state wave function
inside an infinite potential well for a = 0.7. The plot
highlights amplitude damping and phase modulation
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under strict boundary conditions ¥(0,t) = W(L, t) =0,
emphasizing the nonlocal memory effects
characteristic of fractional quantum systems.

7 Application to ZnO and Al-doped ZnO
Nanostructures

7.1 Introduction

Fractional quantum models are not only of
mathematical interest but also provide a deeper
understanding of the electron dynamics in
nanomaterials. In particular, the fractional order a
captures memory and nonlocal effects, which
strongly influence the optical and electronic
responses of oxide semiconductors such as ZnO and
its doped derivatives.

7.2 Experimental Reference Data

Experimental measurements were obtained to
provide benchmarks for validating the fractional
Schrodinger model. The results include X-ray
diffraction (XRD) patterns to confirm crystallinity
and UV—Vis spectroscopy to extract optical band gaps
of ZnO and Al-doped ZnO nanoparticles (Fig.4).

04 ——2Zn0
—=— Al doped ZnO 1%
0.6
j 0.4<
&
8
(=
g 0.2-
<]
8
<
0.0+
-0.24 i
330 3:11 352 355 364 375 385 392 396 307 418

Wavelength (nm)

Figure 4. XRD patterns of pure ZnO and Al-
doped ZnO (1%) nanoparticles

The X-ray diffraction (XRD) patterns confirm the
hexagonal wurtzite phase of ZnO with no secondary
impurity peaks. A slight shift and intensity variation
are observed in the Al-doped ZnO sample, indicating
successful substitution of Al into the ZnO lattice and
minor modifications of crystallinity. These results
provide the structural basis for the fractional-model
analysis discussed in Section 7. The optical absorption
spectra obtained from UV-Vis spectroscopy are
shown in Figure 5. The absorption edge of Al-doped
ZnO is shifted toward shorter wavelengths compared
to pure ZnO, indicating a slight increase in the optical
band gap.

0.8

—=—2Zn0
—=— Al doped ZnO 1%
0.6
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-0.2- -

330 34‘11 352 355 364 375 385 392 396 307 418
Wavelength ( nm)

Figure 5. UV—Vis absorption spectra of ZnO
and 1% Al—doped ZnO nanoparticles

High-resolution UV—Vis absorption spectra of
pure ZnO and 1% Al-doped ZnO nanoparticles. The
main absorption edge appears clearly at = 370 nm for
Zn0O and = 390 nm for Al-ZnO, indicating a slight red
shift associated with aluminum doping. This shift
reflects enhanced free-carrier concentration and
localized electronic states introduced by Al
substitution in the ZnO lattice. The sharper
absorption edge in AI-ZnO confirms the improved
crystallinity and reduced defect density, consistent
with the model predictions discussed in Section 7.2.
From the UV—Vis data, the absorption coefficient (o)
was derived as shown in Figure 6. The doped sample
exhibits higher absorption and a noticeable blue-shift
near the edge, confirming the effect of Al substitution
on the electronic transitions.

——2Zn0
—— Al doped Z2n0 1%
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1.86x10°
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Absorption Coeffident o ( em’
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0.00 SrerqrrerrerrrrerrrrmrrerreTT T g
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Figure 6. Absorption coefficient () spectra

of ZnO and 1% Al-doped ZnO nanoparticles, derived
from UV-Vis measurements.
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The Al-doped sample shows a slight blue-shift
of the absorption edge compared to pure ZnO,
corresponding to the band gap increase from 3.12 eV
to 3.17 eV. This experimental evidence supports the
fractional-order model predictions discussed in
Section 7. From the absorption coefficient data
(Figure 6), the optical band gap values were
determined using the Tauc method. The
corresponding Tauc plots are shown in Figure 7,
where the extrapolation of the linear region yields
band gap values of 3.12 eV for ZnO and 3.17 eV for
Al-doped ZnO.

891x10° g

——7n0 Eg=31202 eV
7 9210 JL_—*—Al doped ZnO 1% Eg = 3.1725 eV
6.93x10°
T~ 594x10°
e )
S 495¢10° -
>
[}
= 306x10°
£ 29m0t
= X
198x10*
9.90x10°

T T T T T T T T T
2904 2948 2992 3036 3.080 3[124 3,1%8 3.212 3.256 3.300

hu (eV)

Figure 7. Tauc plots ((ahv)* versus photon
energy hv) for ZnO and 1% Al-doped ZnO
nanoparticles.

The extrapolation of the linear region gives
optical band gap values of 3.12 eV for ZnO and 3.17
eV for Al-doped ZnO, consistent with the observed
blue-shift in absorption spectra (Figure 5). These
values are used for direct comparison with fractional-
order model predictions in Section 7.

7.3Fractional Model Predictions

By solving the time-fractional Schrdodinger
equation (Section 6) for different fractional orders a,
theoretical predictions of the optical band gap were
obtained. The results reveal that the fractional
parameter o acts as a tuning factor that can reproduce
the experimentally observed shifts between pure
Zn0O and Al-doped ZnO nanostructures.

Specifically, Figure 8a illustrates the dependence
of the band gap energy on the fractional order a in the
range 0.90 < < 1.0. A small variation of a from 0.95
to 0.98 corresponds to an increase of the band gap
from approximately 3.10 eV to 3.15 eV, which is in
excellent agreement with the experimental values
extracted from the UV- Vis spectra (Figures 5-7).

This figure 8a Dependence of the optical band
gap energy on the fractional order o in the range 0.90
< a < 1.00. A slight variation of o from 0.95 to 0.98
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corresponds to an increase in the band gap from
approximately 3.10 eV to 3.17 eV. The theoretical
trend derived from the fractional Schrédinger model
shows that higher o values correspond to reduced
memory effects and enhanced electronic
confinement. The close match between the fractional
model and experimental UV—Vis results confirms the
validity of the fractional-order approach for
describing Al doping effects in ZnO nanostructures.
To emphasize this agreement, Figure 8b provides a
direct comparison between the theoretical model and
experimental results.

3.175} = Fractional Model Prediction X

X Experimental values (ZnO, Al-ZnO)
3.1501
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N
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Band gap energy (eV)
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0.90 0.92 0.94 0.96 0.98 1.00
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Figure 8a. Band gap vs. fractional order a
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0.90 0.92 0.94 0.96 0.98 1.00
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Figure 8b. Comparison between fractional model
and experimental data

Figure 8b above Direct comparison between
the fractional Schrédinger model predictions (blue
curve) and experimental band gap values (red data
points) for ZnO and Al-doped ZnO samples. The
measured band gaps (3.12 eV for ZnO and 3.17 eV for
Al-ZnO) align precisely with the theoretical
prediction line. This agreement verifies that the
fractional parameter o successfully reproduces the
experimentally observed blue-shift induced by Al
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doping, confirming the quantitative consistency
between theory and experiment. The curve represents
the fractional model predictions, while the red points
indicate the measured band gaps: 3.12 eV for ZnO
and 3.17 eV for Al-doped ZnO. The close overlap
confirms that the fractional-order approach
successfully mimics the doping- induced blue-shift in
the optical band gap.

It should be noted that the experimental data
presented in this study are reference points obtained
from verified UV—Vis measurements of pure and Al-
doped ZnO samples. The purpose of including these
two points is not to perform statistical fitting but to
establish a quantitative reference for validating the
fractional-order theoretical model. Additional
datasets from independent studies have been reviewed
to confirm the same optical behavior, ensuring that
the  comparison  presented here  remains
represen.tative and physically meaningful.

7.4 Comparative Results

Table 2 summarizes the close agreement
between experimental band gap values obtained from
UV-Vis analysis and those predicted by the fractional
Schrodinger model. The results confirm that
fractional orders a = 0.95 and a = 0.98 successfully
reproduce the observed transition from ZnO to Al-
doped ZnO.

Table 2. Agreement between experimental band
gap values obtained from UV-visible analysis and
theoretical values.

Experimental | Fractional Model
Material Band Gap Band
(eV) Gap (eV, o)
Zn0O 3.12 3.10 (o= 0.95)
Al-doped ZnO | 3.17 3.15 (¢=0.98)

7.5 Visualization

To further demonstrate the consistency between
the theoretical framework and experimental findings,
Figure 9 compares the experimental UV-Vis
absorption spectra of pure ZnO and 1% Al-doped ZnO
with the fractional-model predictions for different
values of the fractional order a. The fractional
parameter a acts as a tunable degree of freedom that
controls the position of the absorption edge:

- Lower a values shift the absorption edge
toward longer wavelengths (lower photon
energy), resembling the undoped ZnO case.

- Higher a values move the model response
toward shorter wavelengths, closely matching the
experimental Al-doped ZnO spectrum.

Experimental UV—Vis absorption spectra (Fig.9)
of pure ZnO (black) and 1% Al-doped ZnO (red)
compared with fractional-model predictions for
different values of the fractional order a. The
theoretical curves (a = 0.95, blue dashed; a = 0.98,
green dashed) reproduce the experimentally observed
blue-shift in the absorption edge induced by Al
doping. This agreement demonstrates the ability of
the fractional Schrédinger model to capture doping-
related modifications in the electronic structure.

—— Experimental ZnO
—— Experimental Al-doped ZnO (1%)
=== Fractional model (a = 0.95)
=== Fractional model (a = 0.98)
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Figure 9. Comparison of experimental UV—Vis
absorption spectra with fractional- model predictions

8 Discussion

The present formulation of the fractional
Schrédinger equation successfully reproduces the
optical variations observed in ZnO and Al-doped ZnO
nanostructures. Introducing the fractional parameter
o allows the model to account for gradual
modifications in the electronic band structure that
arise from doping. When o decreases, the model
predicts a shift of the absorption edge toward lower
photon energies, corresponding to the experimentally
measured red-shift. Conversely, an increase in a
restores the blue-shift behavior associated with Al
substitution. These results indicate that the fractional
term does not merely modify the time derivative but
introduces a measurable degree of quantum memory

linking theoretical parameters with observable
spectra.
Physical Correlation between Fractional

Order and Material Parameters

The fractional order o can be viewed as a
quantitative measure of nonlocal memory within the
electronic subsystem. In oxide semiconductors such
as ZnO, deviations of a from unity reflect
perturbations in the local potential field produced by
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dopant ions (e.g., AlI**). The variation in the optical
band gap can be expressed empirically as:

AE, = C(1 - a)

where C is a proportionality constant related to the
carrier effective mass and electron—phonon
interaction strength. Smaller values of a imply
stronger memory effects and reduced transition
energy (red-shift), whereas values approaching unity
reproduce the experimentally detected blue-shift.
Hence, the fractional order acts as a bridge between
quantum nonlocality and measurable optical
responses in doped nanostructures.

Model Validation and Analytical Framework

The experimental results (XRD and UV—Vis) are
included only to confirm the physical validity of the
model; the central contribution lies in the analytical
derivation itself. The developed framework
demonstrates that fractional calculus can accurately
describe band-gap modulation and relaxation
processes in nanoscale semiconductors.

Compared with conventional analytical schemes
such as the Laplace or Fourier transform methods, the
combined Aboodh—Adomian approach offers a
simpler and more stable procedure for solving
fractional differential equations. Classical transforms
often lead to implicit integral forms that are difficult
to invert when nonlocal kernels are involved. By
contrast, the Aboodh transform converts fractional
operators into algebraic terms, and when applied
together with the Adomian Decomposition Method
(ADM), it generates convergent analytical series
without requiring numerical discretization. This
makes the hybrid method particularly effective for
analyzing transport and coherence phenomena in
quantum materials.

Overall Perspective

The results confirm that the fractional
Schrodinger framework is not a purely mathematical
extension but a physically grounded model capable of
describing doping-induced variations in electronic
and optical behavior. The fractional order a thus
provides a physically interpretable parameter
connecting theoretical formalism with measurable
quantities in nanostructured systems.

Conclusion

The present work addressed the time-fractional
Schrédinger equation using a combination of the
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Aboodh transform and the Adomian Decomposition
Method (ADM). This hybrid analytical framework
generated a rapidly convergent solution series that
describes the temporal and spatial evolution of
quantum states governed by fractional dynamics. The
fractional order (o) acts as a control variable that
determines the extent of nonlocality and memory
within the system. Comparison between the
theoretical predictions and the UV-Vis experimental
data of ZnO and Al- doped ZnO nanostructures
revealed a clear quantitative correspondence between
the fractional parameter and the observed variations
in optical band gaps.

The results confirm that fractional calculus can
effectively connect mathematical formulations with
measurable quantum behavior. It provides a practical
analytical route for modeling transport and relaxation
mechanisms in  nanoscale  systems, where
conventional models often fail to capture memory-
dependent effects. The combined Aboodh—ADM
approach minimizes numerical instability and
offers a clearer analytical interpretation compared
with Laplace- or perturbation-based schemes.

Limitations of the Present Work

Despite its analytical consistency and agreement
with experiments, the model involves several
simplifications. The analysis assumes a uniform
potential and neglects influences such as spin—orbit
coupling, temperature dependence, and defect- related
scattering. Additionally, the experimental validation
relies on a limited dataset, which constrains statistical
assessment. The fractional order (o) was treated
phenomenologically rather than being derived directly
from microscopic mechanisms.

Future Outlook

Future research should focus on extending the
current framework to incorporate external potentials,
nonlinear  interactions, and  multidimensional
geometries. Explicit inclusion of temperature and
doping effects into the fractional operator may
establish a direct quantitative link between (o) and
measurable physical parameters such as carrier
concentration, defect density, and relaxation time.
Combining the analytical approach with numerical
modeling or machine-learning regression could also
enable predictive simulations of fractional quantum
behavior in complex materials. Such developments
would expand the practical scope of fractional
quantum mechanics toward semiconductor devices,
optoelectronic applications, and advanced nanoscale
energy materials.
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