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The nearest-neighbor level spacing distribution is numerically investigated by direct diagonalizing a 
disordered Anderson Hamiltonians for quantum systems. The level statistics scaling is examined near the 
metal-insulator transition and the correlation exponent is found. We suggest a new universal level spacing 
distribution at the critical point of the transition, which is related to the multifractality of the electron 
wavefunctions. 

  
Introduction 
The level statistics in the energy spectrum of a disordered system became a subject of 

modern condensed matter theory. Particular interest comes also from theories of critical 
phenomena. The distribution of energy values of quantum-chaotic systems is assumed to obey 
certain probability laws, which are invariant with respect to unitary transformations. When the 
fluctuations of randomness of the atomic and/or impurity potential are increased, a quantum system 
undergoes a second order phase transition, which is origin of the Anderson metal-insulator 
transition. In condensed matter physics this transition is referred to as a localization-delocalization 
transition. A metallic phase is known to be described by the random matrix theory, developed by 
Wigner and Dyson [1]. In the insulating regime, the electron levels of the strongly localized states 
fluctuate like random stochastic variables [2]. The study of the crossover between the chaotic 
(Wigner) and ergodic (Poisson) statistics which is induced by the phase transition was started in [3] 
and became the subject of several subsequent investigations [4-6]. 

The nearest neighbor spacing distribution P(s) is accepted as a characteristic entity for 
description of the level statistics. In the metallic regime P(s) is very close to Wigner surmise  

 
Pw(s) = πs/2 exp(-πs2/4),                                             (1) 

 
where s is measured in units of the mean spacing ∆. In the localized regime the level spacings are 
distributed according to the Poisson law  
 

    Pp(s) = 1/∆ exp(-s/∆),      (2) 
 
because the levels are entirely uncorrelated. Both distribution laws are universal and do not depend 
on the properties of the system (Fig.1.). The investigation of the non-trivial crossover of P(s) 
between these two universal limits, namely between the Wigner and the Poissonian limits, which 
accompanies the disorder-induced metal-insulator transition, was performed in [2-4]. 

It is well known that P(s) exhibits critical behavior and is scale invariant at the critical point. 
In fact this distribution gives a unique method to study the critical behavior of the localization 
length. The invention of a third universal level statistics precisely at the transition [2,3] excited 
large interest in finding an explicit analytical expression of the critical spacing distribution Pcr(s). 
The form of the critical distribution is different for various symmetries. For example, for the 
orthogonal symmetry Pcr(s) is proportional to s for small spacings s. For larger spacings s it is 
shown that Pcr(s) behaves similar to the Poisson asymptotic limit P(s) → Pp(s) for s >>∆, because 
the Thouless energy at the transition point is order of the mean level spacing ∆. This simple 
exponential asymptotic form of the critical level spacing distributions is valid not only for the 
orthogonal symmetry (with spinless electrons an without magnetic field), but also for other 
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universality classes: the unitary (in the presence of the magnetic field) and the symplectic (in the 
presence of the spin-orbit coupling) classes.   

 
Method and results 
By exact diagonalizing the Anderson Hamiltonians with the advanced procedures developed 

especially for clusters of huge sizes up to 107 lattice sites, we investigate the finite-size scaling 
properties of the probability distribution of neighboring spacings and find the critical parameters, 
characteristic of the second phase transition. Our main result is that the critical P(s) is scale 
invariant for various symmetries and approaches the integrability limit for asymptotically large 
spacings. In addition, the critical index of the correlation length is extracted on the basis of finite-
size scaling analysis with the system size L and disorder degree W of the random impurity potential. 
The Anderson model is defined by the Hamiltonian  

 
HA = Σn εn a+

nan + Σn≠m (a+
nam  + c.c.),                        (3) 

 
where a+

n(an) is the creation (annihilation) operator of an electron at a site n, with m denoting the 
nearest neighbors of n. The site energies εn are measured in units of the overlap integral between 
adjacent sites. They are independent random variables that are distributed around zero according to 
the box distribution of width W. A simple cubic lattice with periodic boundary conditions was used. 
It is known from the transfer-random-matrix method, that in the center of the energy band the 
critical disorder degree W = Wcr  ≈ 16,5 [4]. The electron spectrum was properly unfolded by fitting 
the integrated density of states to polynomial splines. It should be noted that the numerical 
diagonalization of giant sparse matrices of rank 106- 107 is highly nontrivial task. As expected the 
P(s) is indeed scale-invariant at the Wcr that means it does not depend on the system size. The best 
fit using the χ2 -criterion over large range of spacings provides the exponent, which is very close to 
the theoretical value. This value has been calculated by the transfer matrix method ν  = 1.5 in the 
vicinity of the metal-insulator transition at the orthogonal symmetry [6]. 
 

 
Fig. 1. (left) Level spacing distribution P(s) for various system sizes at the critical point of the 
metal-insulator transition (W=Wcr). Wigner and Poisson distributions correspond to Eq.(1) and 

Eq.(2), respectively. Dash-dotted line is the result of the perturbative theory with β=1.24. Full line 
is the derivative of Icr(s) from the interpolation formula Eq.(6). 

(right)  Cumulative probability of neighboring spacings I(s) for various system sizes L.  Solid line is 
Eq.(5) with β=1.00 Dash-dotted line is power law with β=1.24. Dashed and dotted lines are IW(s) 

and IP(s), respectively from Eq. (4). 
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It is important that exponential tail of P(s) contributes to the relative accuracy only with the 
small weight. Therefore its influence can be neglected. Is it imperative furthermore to investigate 
the asymptotical behavior of the level spacing distribution at large s, particularly without including 
data from the region 0≤s≤2. In what follows, we consider the cumulative level spacing distribution 
probability density function I(s) = ∫ dssP )( . It gives the probability to find neighboring energy 

levels with the separation E > s∆. The integration does not change the asymptotic form of the 
probability function, which is exponential for any symmetry. Since s>0, I(s) = 1, and by the 
normalization to the total number of the spacings in a given energy interval ∫ =1)( dssI . The 
Wigner surmise and the Poisson distribution yield  

 
Iw(s) =exp(-πs2/4),     and    Ip(s) = exp (-s),                                   (4) 

 
respectively. The numerical study of the cumulative probability I(s) is analogous to that of the 
density of states while unfolding the electron spectrum. By arraging the spacings in a descending 
sequence one can very accurately construct the desired histograms of I(s). Using the common 
statistical hypothesis at large s 
 

ln Icr(s)  = - Acr sβ ,      (5) 

 
we calculated Acr and β  for various system sizes. Our results show that independent of size the 
index gives β  = 1.00 ± 0.05 (see Fig.1 right). This means that the asymptotic behavior is better 
described by the linear law for large spacings, so that Icr (s) ∝ exp(-Acr s) with the universal value 
Acr≈ 1.9 ± 0.1. This is very similar to the insulating regime, although the decay rate Acr  is almost 
twice larger that unity  (Poissonian integrability). This is due to quantum mechanical level 
repulsion.  

Our linear asymptotic result is in a direct contrast to the fractional power law with  β  ≈ 1.2-
1.4 obtained previously by other research groups. This controversy provides new constructive point 
of view on the universal form of the level statistics that changes conventional approaches to the 
description of the critical phenomena in the condensed matter physics. We propose that the index 
Acr directly related to the multifractal nature of the electron wavefunctions (Fig.2). 

 

 
 
 

Fig.2. The typical amplitude distribution of the multifractal electron wave function of the electron at 
the critical region of the metal-insulator transition, obtained numerically for the 2D Anderson model 

with the lattice size of L=100 for fixed W and E  (W is the disorder parameter, E is the electron 
energy). The fundamental symmetry corresponds to the orthogonal case. (See also Ref. [5]) 

 



 59

 In addition, the equivalence of averaging over the spectrum and over the realizations of the 
random potential within a statistical ensemble was proven. Indeed, due to diminishing the spacing 
with the system size ∆ ∝ L3, the averaging for smaller cubes is performed over many samples, while 
for our largest systems L=100 an 200 a single realization without ensemble averaging is even 
sufficient to get similar distributions with comparable precision. 
 For numerically describing a crossover between small and large s, we propose an explicit 
form of the new interpolation probability function 
 
    Icr(s) = exp {µ – (µ2 + A2

cr s2)½},     (6) 
 
with a coefficient µ =  2,21. Although we do not provide here a rigorous analytical proof, it gives an 
excellent fit all over the range of the computed spacings [2]. The corresponding Pcr(s) fulfills the 
both normalization conditions. It is interesting that this exponent is related to the index of 
multifractality of the critical eigenstates. Therefore we suggest that the statistical properties of the 
electron energy spectra define the multifractal nature of the wavefunctions at the criticality.  Similar 
to the chaotic counterpart in classical mechanics the critical index of the localization length in 
quantum systems depends strongly on the dimensionality [5] and basic symmetry [6]. 
 

Conclusions 
A presence of a random impurity potential leads to the effect of the localization of electron 

states, which is an origin of the disorder induced metal- insulator transition. Quantum interference 
of electron waves is responsible for a dramatic change in transport properties. Extensive numerical 
simulations support conclusions of previous analytical approaches. Correlations in spectra of 
disordered systems play an important role in describing the Anderson transition. The energy level 
statistics exhibits critical behavior and experiences a crossover from the random matrix theory 
towards the uncorrelated Poissonian statistics. An existence of a novel critical statistic allows one a 
self-contained description within a finite-size single parameter scaling hypothesis and extracting the 
critical exponents. Fundamental symmetries (orthogonal, unitary and symplectic) and the spatial 
dimensionality significantly influence the critical statistics, corresponding to different physical 
situations. By using various numerical techniques (like the advanced Lanczos diagonalization [6], 
transfer matrix methods, Monte-Carlo algorithms) one can successfully study quantum features of 
transport characteristics and the spectral fluctuations of the disordered systems close to the metal- 
insulator transition in the presence of a magnetic field and a spin-orbit interaction. 
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ЭНЕРГИЯ ДЕҢГЕЙЛЕРІНІҢ  МЕТАЛДЫҚ ИЗОЛЯТОРҒА АУЫСҚАН КЕЗДЕГІ 

УНИВЕРСАЛДЫҚ СТАТИСТИКАСЫ 
 

И.Х. Жарекешев 
 

Кванттық жүйеде фазалық ауысу сындық нүктесінде энергияның көршілес деңгейлерінің 
арасындағы қашыктықтардың үлестірілу мүмкіндігі алғашқы рет зерттелген. 

 
 
 

УНИВЕРСАЛЬНАЯ СТАТИСТИКА УРОВНЕЙ ЭНЕРГИИ НА ПЕРЕХОДЕ МЕТАЛЛ-
ИЗОЛЯТОР 

 
И.Х. Жарекешев 

 
Изучается вероятность распределения расстояний между соседними уровнями энергии в 

критической точке фазового перехода в квантовой системе. 
 


