МРНТИ 29.19.16

Исабаев Б.Ш.¹*, Алмасов Н.Ж.², Алиакбарова А.А.², Джолмашева У.К.²

¹Казахский национальный университет им. аль-Фараби, Казахстан, г. Алматы ²Казахский национальный технический исследовательский университет им. К.И. Сатпаева, Казахстан, г. Алматы, *e-mail: bake_production@bk.ru

ЭЛЕКТРОННЫЕ СВОЙСТВА ТОНКИХ ПЛЕНОК AS₂S₃

В данной работе методом термического испарения в вакууме получены тонкие аморфные пленки As₂S₃. Исследованы температурные зависимости проводимости пленочных образцов. Установлено, что температурная зависимость проводимости $\sigma(T)$ пленочных образцов, в исследуемом интервале температур 300 – 440 К носит полупроводниковый характер и хорошо описывается экспоненциальной зависимостью вида $\sigma = \text{Cexp}(-\text{E}/k\text{T})$. Из вычислений величин предэкспоненциального множителя С, выявлено, согласно теории Мотта, что с уменьшением толщины пленочных образцов, механизм проводимости по делокализованным состояниям сменяется на прыжковый механизм проводимости по локализованным состояниям в «хвостах» разрешенных зон, а затем на механизм проводимости путем прыжков носителей заряда по локализованным состояниям вблизи уровня Ферми. Энергия активации проводимости Е пленочных образцов составляет примерно половину оптической ширины запрещенной зоны. Исследованы спектры оптического пропускания пленочных образцов. Установлено, что ОНИ ИМЕЮТ ТИПИЧНУЮ ДЛЯ НЕКРИСТАЛЛИЧЕСКИХ ПОЛУПРОВОДНИКОВ СПЕКТРАЛЬНУЮ ЗАВИСИМОСТЬ коэффициента пропускания Т в области края оптического пропускания, состоящую из области межзонных переходов, экспоненциального участка и области, связанной с поглощениями на различных структурных неоднородностях. Предполагается, что экспоненциальный край поглощения обусловлен электронными переходами между локализованными состояниями в хвостах зон, причем плотность состояний экспоненциально уменьшается с энергией.

Ключевые слова: размерный эффект, тонкие аморфные халькогенидные пленки, электропроводность, оптическое поглощение, оптическая запрещенная зона.

Issabayev B.Sh.^{1*}, Almassov N.Zh.², Aliakbarova A.A.², Djolmasheva U.K.² ¹Al-Farabi Kazakh National University, Kazakhstan, Almaty ²Kazakh National Research Technical University after K.I. Satpaev, Kazakhstan, Almaty, *e-mail: bake_production@bk.ru

Electronic properties of As₂S₃ thin films

In work as method of thermal evaporation in a vacuum thin amorphous films of As_2S_3 are received. Temperature dependences of conductivity of films are investigated. It is established that the temperature dependence of conductivity σ (T) of films, in the studied interval of temperatures 300 – 440 K has semiconductor character and is well described by exponential dependence of $\sigma = \text{Cexp}(-\text{E}\sigma/\text{kT})$. From calculations of value of C, it is revealed, according to Mott's theory that with reduction of thickness of films, the conductivity mechanism on the delocalized states is replaced with the hopping mechanism of conductivity on the localized states in «tails» of the resolved zones, and then on the conductivity mechanism by jumps of carriers of a charge on the localized states near Fermi's level. Activation energy of conductivity $E\sigma$ of films makes about a half of optical band gap. Spectra of optical transmission of films are investigated. It is established that they have the spectral dependence of the transmission coefficient T, typical for noncrystaline semiconductors in the region of the optical transmission edge, consisting of the region of interband transitions, the exponential region and the region associated with absorption at various structural inhomogeneities. It is supposed that the exponential absorption edge is caused by electronic transitions between the localized states in tails of the bands, and density of states exponential decreases with energy.

Key words: size effect, thin amorphous halkogenidny films, electrical conductivity, optical absorption, optical forbidden region.

Исабаев Б.Ш.¹*, Алмасов Н.Ж.², Алиақбарова А.А.², Джолмашева У.К.² ¹әл-Фараби атындағы Қазақ ұлттық университеті, Қазақстан, Алматы қ.

²Қ.И. Сәтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті,

Қазақстан, Алматы қ. *e-mail: bake_production@bk.ru

As₂S₃ жұқа қабықшаларының электрондық қасиеттері

Бұл жұмыста вакуумда термиялық буландыру әдісімен Аs, S, аморфты жұқа қабықшалар алынды. Қабықшалық үлгілердің өткізгіштігінің температураға тәуелділігі зерттелді. Зерттелген температураға тәуелділігі жартылай өткізгіштік сипатқа ие және олар $\sigma = Cexp(-E_/kT)$ түріндегі экспоненциялдық тәуелділікпен жақсы сипатталады. Экспоненциялды көбейткіштің алдындағы С шамаларын есептеулерден, Мотт теориясында келісілгендей, қабықшалық үлгілердің қалыңдығы тыйым салынбаған аймақтың «соңдарында» кемігеннен төңіректелінбеген күйдегі өткізгіштігі механизмі төңіректелінген күйдегі зарядты тасымалдаушылардың секірулері жолымен өткізгіштігі механизміне алмасатындығы анықталады. Қабықшалық үлгілердің өткізгіштік активтілігі энергиясы Е тыйым салынған аймақтың оптикалық енінің шамамен жартысын құрайды. Қабықшалық үлгілердің оптикалық өткізушілік спектрлары зерттелінді. Олардың – кристалданбаған жартылай өткізгіштіктерге тән типтік аймақаралық ауысулар облысынан, экспоненциалды учаскелерден және әртүрлі құрылымдық біртектіеместіктерде жұтылулармен байланысқан облыстардан тұратын оптикалық өктізушілік шетіндегі аймақта Т өткізгіштік коэффицентінің спектралды тәуелділігіне ие екендігі тағайындалды. Жұтылудың экспоненциалды шеті аймақтардың соңдарындағы төңіректелген күйлерімен арадағы электрондық ауысулармен шартталынған, сонымен қатар күйлердің тығыздығы энергиямен бірге экспоненциалды кемиді.

Түйін сөздер: өлшемдік әсер, халькогенидті аморфты жұқа қабықшалар, электрөткізгіштік, оптикалық жұтылу, оптикалық тыйым салынған аймақ.

Введение

Физика некристаллических полупроводников, к которым относятся халькогенидные стеклообразные полупроводники, является одной из новых и перспективных областей физики [1,2]. Исследование особенностей атомной структуры и физических свойств таких материалов открывает новые возможности их практического использования для инфракрасной оптики, опто-волоконных систем телекоммуникации, голографических систем регистрации оптической информации, дифракционной оптики и т.д. [3-5]. Весьма привлекательными для вышеуказанных приложений являются материалы систем As-S, As-Se, As-S-Se в чистом и легированном виде [6-15], которые обладают рядом уникальных свойств, а именно, прозрачностью в инфракрасной области [16-19], эффектом оптической памяти [20-24], высокой светочувствительностью [25,26], высокой разрешающей способностью [27], дешевизной и простотой в получении [28-30]и др.

Однако количество работ, посвященных исследованию размерных эффектов в тонких

аморфных халькогенидных пленках недостаточно. Поэтому на сегодняшний момент изучение электронных свойств тонких аморфных халькогенидных пленок системы As-S представляет большой исследовательский и практический интерес.

Целью данной работы является исследование изменения электронных свойств тонких аморфных халькогенидных пленок As₂S₃, вследствие размерного эффекта, определение электрических и оптических параметров пленок.

Методика эксперимента

Приготовление пленок As₂S₃ осуществлялось на установке ВУП-5М методом термического испарения в вакууме. Мишень представляла собой поликристаллический состав, синтезированный из элементов полупроводниковой степени чистоты (99,999%). Процесс термического испарения проводился в камере по достижении рабочего вакуума ~3,5 · 10⁻³ Па. В качестве подложек использовались монокристаллический кремний, каптон, кварцевое стекло. Перед напылением образцов подложки из каптона и кварцевого стекла подвергались химической и термической обработке.

Толщина и элементный состав полученных пленок контролировался методом энерго-дисперсионного анализа на сканирующем электронном микроскопе Quanta 3D 200i. Детектирование исследуемых пленок производилось под воздействием пучка электронов с энергией до 30 кэВ. На рис.1 и 2 соответственно приведены результаты измерения толщины и типичный энергетический спектр пленок As₂S₃. Данные элементного состава пленок приведены в таблице 1.

Рисунок 1 – толщина пленок а-As₂S₃ а) 2300 нм; б) 1100 нм; в) 750 нм

Рисунок 2 – Типичный спектр характеристического излучения а) и морфология поверхности б) пленок а-As,S,

Таблица 1 – Элементный состав тонких пленок а-As₂S₃

Element	Wt%	At%
SK	37.85	58.82
AsK	62.15	41.18

Как видно из рисунка 2 и таблицы 1, морфология поверхности пленок однородная, аморфная, отличие элементного состава пленок от формульного соотношения не превышало $\pm 1,5$ ат. %.

Исследования температурной зависимости электропроводности проводились на образцах с планарной конфигурацией расположения электродов в электрических полях напряженностью E= (10³-10⁴) В/см в области линейности вольтамперных характеристик. Для измерения малых токов (до 10⁻¹⁴ A) использовался пикоамперметр Keitley. Температура образца регистрировалась медь-константановой термопарой. Скорость нагрева образцов в процессе измерений составляла около 2 град/мин.

Спектры оптического пропускания и отражения регистрировались на спектрофотометре Shimadzu UV3600.

Результаты и обсуждение

На рисунке 3 приведены температурные зависимости электропроводности тонких пленок As₂S₃.

Рисунок 3 – Температурные зависимости электропроводности тонких пленок As₂S₃

Из температурных зависимостей электропроводности были определены энергии активации проводимости E_{σ} с точностью до (±0.02 eV), проводимости при комнатной температуре σ_0 и величины предэкспоненциального множителя С тонких пленок As_2S_3 . Результаты приведены в таблице 2. Спектры оптического пропускания пленок приведены на рисунке 4.

Рисунок 4 – Спектры оптического пропускания пленок As₂S₃

Оптическая ширина запрещенной зоны E_g пленок определялась по методу Тауца из спектральных зависимостей коэффициента поглощения α в области, соответствующей краю полосы фундаментального поглощения, путем экстраполяции экспериментальных зависимостей (α hv)^{1/2} = f(hv) на ось энергий.

На основе спектральных характеристик поглощения света для пленок а- As_2S_3 были построены зависимости $(ahv)^{1/2} - f(hv)$, показанные на рисунке 5.

Рисунок 5 – Спектральная зависимость края оптического поглощения пленок а-As₂S₃

Как видно из рисунка, для пленок в области коэффициента поглощения $\alpha \ge 10^3$ см⁻¹ хорошо выполняется квадратичный закон поглощения Тауца $(\alpha h v)^{1/2} \sim (hv - E_g)$. Экстраполяция прямолинейных участков кривых до пересечения с осью энергией (hv) позволяла определить значение оптической ширины запрещенной зоны E_g пленок с точностью (±0.01eV). Результаты приведены в таблице 2.

Таблица 2 – Энергия активации проводимости, проводимость при комнатной температуре, величина предэкспоненциального множителя и оптическая ширина запрещенной зоны тонких пленок As₂S₃

d, (nm)	E_{σ} , (eV)	$\sigma_0^{}, (Om^{-1})^{-1}$	C, (Om ⁻ ¹ cm ⁻¹)	$E_{\sigma}^{}, (eV)$
750	1.15	3.5*10-17	5.9*10 ²	2.45
1100	1.03	9.47*10-17	1.30*10	2.41
2300	0.95	1.9*10-16	1.32	2.40

Как видно из таблицы 2, при уменьшении толщины пленок от 2300 нм до 750 нм их запрещенной оптическая ширина зоны увеличивается от 2.40 до 2.45 eV, их энергии активации проводимости увеличиваются от 0.95 до 1.15 eV, а проводимости при комнатной температуре уменьшаются от 1.9*10⁻¹⁶ до 3.5*10⁻¹⁷ От⁻¹ст⁻¹. Величины предэкспоненциального множителя С, согласно теории Мотта, для пленок толщиной 2300 нм указывают на прыжковый характер проводимости вблизи уровня Ферми, в то время как для пленок с толщинами 1100 и 750 нм проводимость осуществляется по распостраненным состояниям.

Заключение

Изменение толщин пленок As_2S_3 , полученных методом термического испарения в вакууме, приводит к некоторым изменеиям в их электронных параметрах, что, по-видимому, связано с флуктуациями в их спектре электронных состояний.

Литература

1 Applications of Chalcogenides: S, Se, and Te. Ed. Ahluwalia G.K. / Springer Series in Material Science, 2017. –234 p.

Tanaka K., Shimakawa K. Amorphous Chalcogenide Semiconductors and Related Materials. Springer Science, 2011. – 239 p.
Tan, Cao, Wu, He, Yang, Zhang, Chen, Zhao, Han, Nam, Sindoro, and Zhang. Recent Advances in Ultrathin Two-Dimen-

sional Nano-materials/ Chemical Reviews. – 2017, 117 (9). – P. 6225–6331.

4 Sugawara K., Nakata Y., Shimizu R., Han P., Hitosugi T., Sato T., and Takahashi T. Unconventional Charge-Density-Wave Transition in Monolayer 1T-TiSe2/ ACS Nano. 2016, 10 (1). – P. 1341–1345.

5 Hosseini P., Wright C.D., H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films // Nature. – 2014. – Vol. 511(7508). – P.206.

6 Ilchevaa V., Petkova P., Boevb V., Petkova T. Optical properties of thermally evaporated (As2Se3)100-xAgx thin films // Physics Proce-dia. 10th International Conference on Solid State Chemistry, Pardubice, Czech Republic. – 2013. – P.67-74.

7 Hristova-Vasileva T., Bineva I., Dinescu A., Danila M. and Arsova D. As2Se3 thin films deposited by frequency assisted thermal evapo-ration – morphology and structure // Journal of Physics: Conference Series. – 2017. – Vol.794, No 1. – 012015 (6p.).

8 Dinesh C. Sati, Kumar R., Mehra R. M., Jain H., and Ashtosh Ganjoo Kinetics of photodarkening in a-As2Se3a-As2Se3 thin films // Journal of Applied Physics. – 2009. – Vol.105. – 123105.

9 Bryce R.M., Nguyen H.T., Nakeeran P., DeCorby R.G., Dwivedi P.K., Haugen C.J., and McMullin J.N. Direct UV patterning of wave-guide devices in As2Se3 thin films // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. – 2004. – Vol.22. – 1044.

10 Färma E., Heikkilä M.J., and Vehkamäki M. As2S3 thin films deposited by atomic layer deposition // Journal of Vacuum Science & Tech-nology A: Vacuum, Surfaces, and Films. – 2017. – Vol.35. – 01B114.

11 Almeida J.M.P., Barbano E.C., Arnold C.B., Misoguti L., and Mendonça C.R. Nonlinear optical waveguides in As2S3-Ag2S chalco-genide glass thin films // Optical Materials Express. – 2017. – Vol. 7, Is.1. – P.93-99.

12 Takenobu S., Hideo H. Ion-beam doping of silver in amorphous As2S3 thin films // Journal of Applied Physics. – 2002. – Vol. 92, No.4. – P.1821-1824.

13 Neimet Yu.Yu., Studenyak I.P., Buchuk M.Yu., Bohdan R., Kökényesi S., Daróci L., Nemec P. Photo-induced effects in (Ag3AsS3)0.6(As2S3)0.4 thin films and multilayers with gold nanoparticles // Semiconductor Physics, Quantum Electronics & Optoe-lectronics. – 2015. – Vol. 18, Iss. 4. – P.385-390.

14 Korobova N., Almasov N., Prikhodko O., Timoshenkov S., Tsendin K. Efficient method of structural and electronic properties modifica-tion of amorphous As-S-Se Chalcogenide Films // Proceedings of Materials Science and Technology (MS&T 2014), October 12-16, Pittsburgh, Pennsylvania, USA. – 2014. – P. 253 – 258. 15 Prikhodko O., Almasov N., Dyussembayev S., Maksimova S., Ushanov V., Tsendin K., Nesterov S. Bismuth impurity influence on elec-tronic properties of amorphous As40Se30S30 films // Chalcogenide Letters. – 2013. – Vol. 10, No. 12. – P.519 – 523.

16 Korobova N., Almasov N., Prikhodko O., Timoshenkov S., and Tsendin K. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying // AIP Conf. Proc. – 2014. – Vol. 1624. – P.69-74.

17 Almasov N.Zh., Prikhodko O.Yu., Tsendin K.D. Sign universion of impurity conduction of As2Se3: Bi vitreuos films made by two dif-ferent methods // Semiconductors. -2012. -N10, Vol. 46. -P. 1319-1321.

18 Электронные явления в халькогенидных стеклообразных полупроводниках. Под. ред. Цендина К.Д. – СПб.: Наука, 1996. – 486 с.

19 Andriesh A.M. Chalcogenide glasses in optoelectronics // ΦΤΠ. - 1998. - T. 32, № 8. - C. 970-975.

20 Almasov N., Bogoslovskiy N., Korobova N., Kozyukhin S., Fefelov S., Kazakova L., Jakovlev S., Tsendin K., Guseinov N. Switching and memory effects in partly crystallized amorphous Ge2Sb2Te5 films in a current controlled mode // J. Non-Cryst. Solids. – 2012. – Vol. 358. – P. 3299–3303.

21 Попович А. Халькогенидная энергонезависимая память CRAM // Компоненты и технологии. – 2010. – №103. – С.52-54.

22 Козюхин С.А., Шерченков А.А., Новоторцев В.М., Тимошенков С.П. Материалы фазовой памяти на основе сложных халькоге-нидов и их применение в устройствах оперативной памяти//Наноэлектроника. – 2011. – Т.6, №3-4.-С.73-81.

23 Paesler M.A., Baker D.A., Lucovsky G., Taylor P.C., Washington J.S.//Bond constraint theory and EXAFS studies of local bonding structures of Ge2Sb2Te4, Ge2Sb2Te5 and Ge2Sb2Te7. J. Optoelectronics and Advanced Materials. -2007. Vol. 9. № 10.- P. 2996–3001.

24 Kolobov A.V., Fons P., Frenkel A.I., Ankudinov A.I., Tominaga J., Uruga T.//Understanding the phase-change mechanism of rewritable optical media. NatureMater. -2004. Vol. 3. -P. 703–708.

25 Несеребрянные фотографические процессы. Под ред. Картужанского А.Л.– Л.: Химия, 1984. – 376 с.

26 Нестеров С.И. Оценка предельного разрешения халькогенидного фоторезиста//Сб. трудов VII Междунар. конф. по аморфным и микрокристаллическим полупроводникам. – СПб., 2010. – С. 115-116.

27 Мотт И., Дэвис Э. Электронные процессы в некристаллических веществах.: пер. с англ. – М.: Мир, 1982. – 560 с.

28 Аморфный кремний и родственные материалы/под ред. Х.Фрицше: пер. с англ. – М.: Мир, 1991. – 544 с.

29 Фельц А. Аморфные и стеклообразные неорганические твердые тела: пер. с англ. – М.: Мир, 1987. – 403 с.

References

1 Applications of Chalcogenides: S, Se, and Te. Ed. G.K. Ahluwalia (Springer Series in Material Science, 2017), 234 p.

2 K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, (Springer Science, 2011), 239 p.

3 Tan, Cao, Wu, He, Yang, Zhang, Chen, Zhao, Han, Nam, Sindoro, and Zhang, Chemical Reviews, 117 (9), 6225–6331, (2017).

4 K. Sugawara, Y. Nakata, R. Shimizu, P. Han, T. Hitosugi, T. Sato, and T. Takahashi, ACS Nano, 10 (1), 1341–1345, (2016). DOI: 10.1021/acsnano.5b06727.

5 P. Hosseini, C.D. Wright, and H. Bhaskaran, Nature, 511(7508), 206, (2014).

6 V. Ilchevaa, P. Petkova, V. Boevb, and T. Petkova, Physics Procedia, 10th Inter, Conf, on Solid State Chemistry, Pardubice, Czech Re-public, 67-74, (2013).

7 T. Hristova-Vasileva, I. Bineva, A. Dinescu, M. Danila, and D. Arsova, J. of Physics: Conference Series, 794 (1), 012015, (2017). DOI:10.1088/1742-6596/794/1/012015

8 Dinesh C. Sati, R. Kumar, R.M. Mehra, H. Jain, and Ashtosh Ganjooless, J. of Applied Physics 105, 123105 (2009). DOI. org/10.1063/1.3151804

9 R.M. Bryce, H.T. Nguyen, P. Nakeeran, R.G. DeCorby, P.K. Dwivedi, C.J. Haugen, and J.N. McMullin, J. of Vacuum Science & Tech-nology A: Vacuum, Surfaces, and Films, 22, 1044, (2004).

10 E. Färma, M.J. Heikkilä, and M. Vehkamäki, J. of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35, 01B114, (2017).

11 J.M.P. Almeida, E.C. Barbano, C.B. Arnold, L.Misoguti, and C.R. Mendonça, Optical Materials Express, 7 (1), 93-99, (2017). doi.org/10.1364/OME.7.000093

12 S. Takenobu and H. Hideo, J. of Applied Physics, 92, 4, 1821-1824, (2002).

13 Yu.Yu. Neimet, I.P. Studenyak, M.Yu. Buchuk, R. Bohdan, S. Kökényesi, L. Daróci, and P. Nemec, Semiconductor Physics, Quantum Electronics & Optoelectronics, 18, 4, 385-390, (2015).

14 N. Korobova, N. Almasov, O. Prikhodko, S. Timoshenkov, and K. Tsendin Proc. of Materials Science and Technology (Pittsburgh, Penn-sylvania, USA, MS&T 2014, 12-16 October, 2014), 253 – 258.

15 O. Prikhodko, N. Almasov, S. Dyussembayev, S. Maksimova, V. Ushanov, K. Tsendin, and S. Nesterov, Chalcogenide Letters, 10 (12), 519 – 523, (2013).

16 N. Korobova, N. Almasov, O. Prikhodko, S. Timoshenkov, and K. Tsendin, AIP Conference Proceedings, 1624, 69-74 (2014). doi.org/10.1063/1.4900459.

17 N.Zh. Almasov, O.Yu. Prikhodko, and K.D. Tsendin, Semiconductors, 46 (10), 1319-1321, (2012),

18 Elektronnyye yavleniya v khal'kogenidnykh stekloobraznykh poluprovodnikakh. Pod. red. K.D. Tsendina, (SPb.: Nauka, 1996), 486 p. (in Russ).

19 A.M. Andriesh, Fizika i tekhnika poluprovodnikov, 32 (8), 970-975, (1998).

20 N. Almasov, N. Bogoslovskiy, N. Korobova, S. Kozyukhin, S. Fefelov, L. Kazakova, S. Jakovlev, K. Tsendin, and N. Gu-seinov, J. Non-Cryst. Solids, 358, 3299–3303, (2012).

21 Popovich, Komponenty i tekhnologii, 103, 52-54, (2010). (in Russ).

22 C.A. Kozyukhin, A.A. Sherchenkov, V.M. Novotortsev, and S.P. Timoshenkov, Nanoelektronika, 6 (3-4), 73-81, (2011).

23 M.A. Paesler, D.A. Baker, G. Lucovsky, P.C. Taylor, and J.S.Washington, J. Optoelectronics and Advanced Materials, 9, (10), 2996–3001, (2007).

24 A.V. Kolobov, P. Fons, A.I. Frenkel, Ankudinov A.I., Tominaga J., and T. Uruga, NatureMater, 3, 703-708, (2004).

25 Neserebryannyye fotograficheskiye protsessy. Pod red. A.L. Kartuzhanskogo (L.: Khimiya, 1984), 376 p. (in Russ).

26 S.I. Nesterov, Sb. trudov VII Mezhdunar. konf. po amorfnym i mikrokristallicheskim poluprovodnikam, (SPb., 2010), pp.115-116. (in Russ).

27 Mott and E. Devis Elektronnyye protsessy v nekristallicheskikh veshchestvakh, (Moscow: Mir, 1982), 560 p. (in Russ).

28 Amorfnyy kremniy i rodstvennyye materialy/pod red. KH.Fritsshe, (Moscow: Mir, 1991), 544 p. (in Russ).

29 Fel'ts, Amorfnyye i stekloobraznyye neorganicheskiye tverdyye tela, (Moscow: Mir, 1987), 403 p.