БИНАРНАЯ {at}-КОМПОНЕНТА В {(dn)a}-И {(ad)n}-МОДЕЛЯХ ЯДРА ⁷Li

Н.В. Афанасьева, Н.А. Буркова, К.А. Жаксыбекова, А.А. Уразалин

Казахский национальный университет им. аль-Фараби, НИИЭТФ, Алматы

В рамках трехтельной αdn -модели ядра ⁷Li построены волновые функции относительного движения и рассчитаны спектроскопические S_t -факторы отделения тритонов в канале $\alpha + t$ с использованием различных моделей волновой функции ядра ⁷Li{ αdn }.

Цель настоящей работы – построить волновые функции (ВФ) относительного αt движения, рассчитать соответствующие спектроскопические S_t -факторы отделения тритонов из ядра ⁷Li и, как следствие, определить вес бинарной конфигурации в трехчастичной $\{\alpha dn\}$ -функции ядра ⁷Li.

Набор относительных координат Якоби для *аdn*-системы представлен на рис. 1.

Рис. 1. Относительные координаты Якоби для αdn -системы: $a - \{(dn)\alpha\}$ -конфигурация; $\delta - \{(\alpha d)n\}$ -конфигурация

Трехчастичную радиальную $\{\alpha dn\}$ -функцию ядра ⁷Li для данного выбора координат (рис. 1(*a*, *б*)) формально можно записать в виде:

$$\Phi_{l,\lambda}\left(\vec{r},\vec{R}\right) = r^{\lambda}R^{l}\sum_{i}C_{i}e^{-\alpha_{i}\vec{r}^{2}}e^{-\beta_{i}\vec{R}^{2}}Y_{\lambda\mu}\left(\Omega_{r}\right)Y_{lm}\left(\Omega_{R}\right).$$
(1)

В данной работе используются три модели трехчастичной $\{\alpha dn\}$ -функции ядра ⁷Li (1). Далее опишем их более подробно. Первая, $\{(dn)\alpha\}$ -модель, характеризуется тем, что здесь скоррелирован *dn*-кластер (рис. 1(*a*)), а в качестве парных межкластерных потенциалов выбирались взаимодействия гауссовой формы с отталкивающим кором, позволяющие правильно передавать соответствующие фазы упругого рассеяния [1]. Соответствующие парные межкластерные потенциалы для данной модели представлены на рис. 2. В дальнейшем будем ссылаться на данную модель как на модель I.

Рис. 2. Парные межкластерные потенциалы для модели I

Для модели I в данной работе будем использовать два варианта набора параметров C_i , α_i , β_i и в дальнейшем будем ссылаться на эти варианты модели { $(dn)\alpha$ } как на I(1) и I(2).

Вторая и третья модели трехтельной ВФ ядра ⁷Li описывают { $(\alpha d)n$ }-конфигурацию данного ядра. В этом случае и для второй, и для третьей модели скоррелированным уже является αd -кластер (рис. 1(δ)), но отличие данных моделей состоит в том, что для бинарных потенциалов $V_{\alpha d}$ -взаимодействия в плече { αd } используется в первом случае отталкивающий потенциал (потенциал с кором), а во втором случае – глубокий притягивающий потенциал с запрещенными состояниями [1]. Соответствующие межкластерные потенциалы для данных моделей представлены на рис. 3. В дальнейшем будем ссылаться на данные модели как на модели II и III соответственно.

Рис. 3. Парные межкластерные потенциалы для модели II и III

Для модели II в данной работе будем использовать три варианта набора параметров C_i , α_i , β_i , а для модели III – два варианта, и в дальнейших рассуждениях будем ссылаться на них как на II(1)-II(3) и III(1)-III(2).

Следует отметить, что вариация параметров межкластерных потенциалов приводит к вариации как энергии связи, так и среднеквадратичного радиуса.

Для построения радиальных ВФ относительного αt -движения необходимо спроектировать трехтельные $\{\alpha dn\}$ -функции на бинарный αt -канал, т.е., по сути, вычислить интеграл перекрывания $\langle \Psi_{\alpha t} | \Psi_{\alpha dn} \rangle$. Далее приводятся детали процедуры проектирования на αt -канал для модели II (III).

Рис. 4 – Схема координатных преобразований при переходе от системы $\{(\alpha d)n\} \kappa \{\alpha t\}$

Для начала требуется провести координатные преобразования согласно схеме, представленной на рис. 4. Диаграмме 4 соответствует следующее аналитическое преобразование координат:

$$\vec{r} = \vec{R}_{\alpha t} - \frac{1}{3}\vec{\xi}_{5}, \ \vec{R} = \frac{2}{3}\vec{R}_{\alpha t} + \frac{7}{9}\vec{\xi}_{5},$$
(2)

где $\vec{\xi}_4$, $\vec{\xi}_5$ – относительные координаты трития, $\vec{R}_{\alpha t}$ – координата относительного движения α и *t* кластеров, \vec{r} – координата относительного движения α и *d* кластеров, \vec{R} – координата относительного движения частиц α , *d* и *n*.

Далее запишем волновые функции ядер. Функция ядра ⁷Li в $\{(\alpha d)n\}$ -представлении имеет вид:

$$\Phi_{\gamma_{Li}} = \Phi^{\alpha}_{000}(1,2,3,4) \chi^{00,00}_{S_{\alpha}M_{S_{\alpha}}T_{\alpha}M_{T\alpha}} \Phi^{d}_{000}(5,6) \sum_{\substack{M,M_{S}\\M_{S_{d}},m_{n}}} \chi^{(\sigma)}_{\frac{1}{2}m_{n}}(7) \chi^{(\tau)}_{\frac{1}{2},-\frac{1}{2}}(7) \times \chi^{(\sigma)}_{1M_{S_{d}}}(5,6) \chi^{(\tau)}_{00}(5,6) C^{SM_{S}}_{1M_{S_{d}}1/2m_{n}} C^{3/2M_{i}}_{1M\,SM_{S}} \Phi_{I,\lambda}(\vec{r},\vec{R}),$$
(3)

где $\Phi_{000}^{\alpha}(1,2,3,4)$, $\Phi_{000}^{d}(5,6)$ – внутренние функции α -частицы и дейтрона соответственно, $\Phi_{l,\lambda}(\vec{r},\vec{R})$ – функция относительного движения α -частицы, дейтрона и нейтрона (1), $\chi^{(\sigma)}$, $\chi^{(\tau)}$ – спиновые и изоспиновые функции соответственно.

Внутреннюю функцию дейтрона можно записать в следующем виде:

$$\Phi_{000}^{d}\left(5,6\right) = \sum_{k} B_{k} e^{-\gamma_{k} \xi_{4}^{2}} \cdot Y_{00}\left(\Omega_{\xi_{4}}\right).$$
(4)

В осцилляторном пределе функция (4) будет однокомпонентной, при этом

$$k = 1, \ B_1 = N_{00} = \sqrt{\frac{4}{\sqrt{\pi}\xi_{04}^3}}; \ \gamma_k = \gamma_1 = \frac{1}{2\xi_{04}^2}; \ \xi_{04} = r_0\sqrt{2}; \ N_{00} = \sqrt{\frac{2}{\sqrt{2\pi}r_0^3}},$$
(5)

где r_0 – осцилляторный параметр.

Также нам потребуется координатная функция трития:

$$\Phi_t\left(\vec{\xi}_4, \vec{\xi}_5\right) = \sum_m A_m e^{-\frac{1}{4}\delta_m \vec{\xi}_4^2} e^{-\frac{1}{3}\delta_m \vec{\xi}_5^2} Y_{00}\left(\Omega_4\right) Y_{00}\left(\Omega_5\right).$$
(6)

Тогда, учитывая преобразования (3)-(6), интеграл перекрывания можно записать в виде:

$$\left\langle \Psi_{\alpha t} \left| \Psi_{\alpha dn} \right\rangle = \sum_{m,i,k} A_m C_i B_k M^{(\tau)} M^{(\sigma)} Y_{00}(\Omega_{\rho}) Y_{00}(\Omega_4) Y_{00}(\Omega_5) Y_{00}(\Omega_{\xi_4}) \times \right. \\ \left. \times \sum_{\substack{M,M_s \\ M_{S_d}, m_n}} C_{1M_{S_d}}^{SM_S} C_{1MSM_S}^{3/2M_i} \int_{0}^{\infty} e^{-\frac{1}{4} \delta_m \vec{\xi}_4^2} e^{-\frac{1}{3} \delta_m \vec{\xi}_5^2} e^{-\alpha_i \vec{r}^2} e^{-\beta_i \vec{R}^2} e^{-\gamma_k \vec{\xi}_4^2} R Y_{1m}(\Omega_R) d\vec{\xi}_4 d\vec{\xi}_5.$$

$$(7)$$

Далее интегрирование по переменной $\vec{\xi}_4$ снимается сразу и сводится к интегралу Пуассона.

Для того чтобы провести интегрирование по переменной $\vec{\xi}_5$, проводим преобразование координат в показателе экспоненты выражения (7) согласно (2).

В итоге получаем квадратичную форму в виде:

$$a_1 \vec{R}_{\alpha t}^2 + a_2 \vec{R}_{\alpha t} \vec{\xi} + a_3 \vec{\xi}_5^2, \qquad (8)$$

где
$$a_1 = \alpha_i + \frac{4}{9}\beta_i$$
; $a_2 = -\frac{2}{3}\alpha_i + \frac{28}{27}\beta_i$; $a_3 = \frac{1}{3}\delta_m + \frac{1}{9}\alpha_i + \frac{49}{81}\beta_i$.

Далее заменой переменных:

$$\vec{\xi}_5 = \vec{y}; \ \vec{y} = \vec{y}_1 + \alpha \vec{R}_{\alpha t}; \ \vec{R}_{\alpha t} = \vec{R}_{\alpha t}$$
(9)

приводим квадратичную форму (8) к диагональному виду $b_1 \vec{R}_{\alpha t}^2 + b_2 \vec{y}_1^2$, где коэффициенты перехода b_i определены следующим образом:

$$b_1 = a_1 + a_2 \alpha + a_3 \alpha^2 = a_1 - a_2^2 / (4a_3); \ b_2 = a_3; \ \alpha = -a_2^2 / (4a_3)$$
(10)

Также согласно (9) преобразуем аргумент векторной сферической функции, входящей в интеграл (7). В итоге получаем:

$$\vec{R} = f_1 \vec{y}_1 + f_2 \vec{R}_{\alpha t} \,, \tag{11}$$

где $f_1 = \frac{7}{9}, f_2 = \frac{2}{3} + \frac{7}{9}\alpha$.

Таким образом, радиальный интеграл в выражении (7) с учетом преобразований (8)–(11) принимает вид:

$$I(\vec{R}_{\alpha t}) = \int_{0}^{\infty} e^{-b_1 \vec{R}_{\alpha t}^2} e^{-b_3 \vec{y}_1^2} Y_{00}(\Omega_r) Y_{00}(\Omega_5) \{Y_{1m}(f_1 \vec{y}_1) + Y_{1m}(f_2 \vec{R}_{\alpha t})\} d\vec{y}_1$$
(12)

или окончательно

$$I(\vec{R}_{\alpha t}) = \frac{f_2 \sqrt{\pi}}{4b_3^{3/2}} e^{-b_1 \vec{R}_{\alpha t}^2} Y_{1m}(\vec{R}_{\alpha t}).$$
(13)

Далее, принимая во внимание (13) и проводя несложные преобразования, получаем следующее итоговое выражение для ВФ относительного αt -движения для модели II (III):

$$\Phi\left(\vec{R}_{\alpha t}\right) = \frac{\pi^2}{4} \sum_{m,i,k} A_m C_i B_k \frac{f_2 \cdot b_3^{-3/2}}{\left(\frac{1}{4}\delta_m + \gamma_k\right)^{3/2}} R_{\alpha t} e^{-b_1 \vec{R}_{\alpha t}^2} Y_{1m}(\Omega_{R_{\alpha t}}) \,. \tag{14}$$

Для расчета спектроскопического *S*-фактора для канала $\alpha + t$ необходимо проинтегрировать квадрат волновой функции (14):

$$S = \int \left| \Phi \left(\vec{R}_{\alpha t} \right) \right|^2 d\vec{R}_{\alpha t} .$$
⁽¹⁵⁾

Построение ВФ относительного движения в $\alpha + t$ канале для { $(dn)\alpha$ }-конфигурации ядра ⁷Li проводится аналогично.

Ниже приведены расчеты спектроскопических S_t -факторов в рамках { $(dn)\alpha$ } и { $(\alpha d)n$ } кластерной конфигурации ядра ⁷Li в αt -канале. Расчеты проводились в соответствии с данными работы [1]. Результаты расчетов представлены в таблице 1 и на рис. 5, 6.

ebssnin epednekbudpurn inbin pudnye b own kunute			
Модель	S_t -фактор	Энергия связи,	Среднеквадратичный
		МэВ [1]	радиус, фм [1]
I (1)	0,9341	-8,7165	2,7715
I (2)	0,9340	-8,7176	2,7921
II (1)	0,8775	-7,2036	2,3124
II (2)	0,8196	-7,2111	2,3359
II (3)	0,8122	-8,1168	2,2491
III (1)	0,8061	-8,1006	2,1845
III (2)	0,8481	-7,4955	2,2333

Таблица 1 – Спектроскопический S-фактор в канале $\alpha + t$ для различных моделей. Энергия связи и среднеквадратичный радиус в αdn -канале

Рис. 5. Волновая функция $\alpha + t$ относительного движения в канале $\{(dn)\alpha\}$

Рис. 6. Волновые функции $\alpha + t$ относительного движения в канале { $(\alpha d)n$ } и бинарная αt -функция, построенная в ПЗС [2]

Как видно из рис. 5 и 6, радиальные функции, спроектированные на бинарный $\alpha + t$ канал для моделей I-III, не имеют узла, т.е. соответствуют в некотором смысле результатам, которые обычно получаются при решении уравнения Шредингера на собственные функции с потенциалом, содержащим отталкивающий кор. В целом, полученные радиальные функции относительного αt -движения не сильно отличаются друг от друга по численным значениям. Так, для моделей I(1) и I(2) значения полученных функций совпадают с точностью до четвертого знака, что делает их графики практически неразличимыми (рис. 5).

В итоге, как видно из таблицы 1, для канала $\alpha + t$ значения спектроскопических факторов варьируются в пределах от 0,8061 до 0,9341 или, другими словами, вес бинарной

 αt -конфигурации в трехчастичной { αdn }-функции ядра ⁷Li составляет 85–93%. В целом все модели согласуются между собой.

Литература

1. Дубовиченко С.Б. Методы расчета ядерных характеристик. - Алматы: Комплекс. 2006. 311с.; <u>http://arxiv.org/abs/1006.4947</u>.

2. Дубовиченко С.Б. Свойства легких атомных ядер в потенциальной кластерной модели. – Алматы: Данекер, 2004. – 247 с.

⁷Li ЯДРОНЫҢ {(dn)a} ЖӘНЕ {(ad)n} ҮЛГІЛЕРІНДЕГІ БИНАРЛЫ {at} -КОМПОНЕНТІ

Н.В. Афанасьева, Н.А. Буркова, К.А. Жақсыбекова, А.А. Уразалин

⁷Li ядросының αdn жобасы негiзiнде $\alpha + t$ каналында әр түрлi ⁷Li $\{\alpha dn\}$ ядросының үлгiлерiмен салыстырмалы αt -қозғалысының радиалды толқындық функциялары құрылды, спектроскопиялық S_t -факторлары есептелiндi.

THE BINARI { αt } -COMPONENT IN THE {(dn) α } AND {(αd)n} MODELS OF ⁷Li

N.V. Afanasyeva, N.A.Burkova, K.A. Zhaksybekova, A.A. Urazalin

Within the αdn -model for ⁷Li nucleus αt relative motion wave functions have been built and spectroscopic S_t -factors of tritons separation have been calculated in the binary $\alpha + t$ channel by using different ⁷Li{ αdn } wave function models.