ПРОЕКТИРОВАНИЕ ВОЛНОВОЙ ФУНКЦИИ 7 Li В $\{(dn)\alpha\}$ - И $\{(\alpha d)n\}$ -МОДЕЛЯХ НА КЛАСТЕРНЫЙ КАНАЛ 5 He $\{\alpha n\}$ + d

Н.В. Афанасьева, Н.А. Буркова, К.А. Жаксыбекова, А.А. Уразалин Казахский национальный университет им. аль-Фараби, НИИЭТФ, Алматы

В рамках трехтельной αdn -модели ядра 7 Li построены волновые функции относительного движения и рассчитаны спектроскопические S_d -факторы отделения дейтронов в канале 5 He + d.

Ранее в [1, 2] были представлены результаты исследования канала 5 He $\{\alpha n\}$ + d в динамическом кластерном подходе для модели ядра 7 Li $\{\alpha t\}$.

В настоящей работе приводится исследование данного канала в рамках $\{(dn)\alpha\}$ - и $\{(\alpha d)n\}$ -моделей ядра 7 Li . В случае $\{(dn)\alpha\}$ -модели в качестве парных межкластерных потенциалов выбирались гауссовские потенциалы с отталкивающим кором, а в случае $\{(\alpha d)n\}$ -модели для бинарных $V_{\alpha d}$ потенциалов взаимодействия в плече $\{\alpha d\}$ использовались как отталкивающий потенциал (потенциал с кором), так и глубокий притягивающий потенциал с запрещенными состояниями (ПЗС) [3]. В настоящей работе в расчетах для каждой модели используется несколько вариантов набора параметров, в связи с чем в дальнейших наших рассуждениях будем ссылаться на данные модели как на I(1)-I(2), II(1)-II(3), III(1)-III(2). Более подробное описание данных моделей ядра 7 Li представлено в работах [3, 4].

Далее кратко приводятся элементы формализма построения волновых функций (ВФ) относительного движения в канале ${}^5{\rm He}+d$ с учетом $\{(dn)\alpha\}$ -конфигурации ядра ${}^7{\rm Li}$.

Набор относительных координат Якоби для канала ${}^{7}\mathrm{Li}\{(dn)\alpha\} \to {}^{5}\mathrm{He}\{\alpha n\} + d$ представлен на рис. 1.

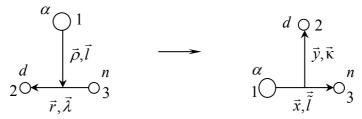


Рис. 1. Относительные координаты Якоби для канала 7 Li $\{(dn)\alpha\}$ \rightarrow 5 He $\{\alpha n\}+d$

Преобразования относительных координат Якоби при переходе от системы 7 Li $\{(dn)\alpha\}$ к системе 5 He $\{\alpha n\}+d$ имеют вид:

$$\begin{cases} \vec{R}_{\alpha} = \vec{R}_{cm} - \frac{3}{7}\vec{\rho} \\ \vec{r}_{n} = \vec{R}_{cm} + \frac{4}{7}\vec{\rho} - \frac{2}{3}\vec{r} \\ \vec{R}_{d} = \vec{R}_{cm} + \frac{4}{7}\vec{\rho} + \frac{1}{3}\vec{r}. \end{cases} \Rightarrow \begin{cases} \vec{x} = \vec{\rho} - \frac{2}{3}\vec{r} \\ \vec{y} = \frac{4}{5}\vec{\rho} + \frac{7}{15}\vec{r} \\ \vec{R}_{cm} = \vec{R}_{cm}. \end{cases}$$
(1)

Также в расчетах потребуются обратные преобразования координат $\{\vec{x},\vec{y}\} \Rightarrow \{\vec{r},\vec{\rho}\}$:

$$\vec{r} = \vec{y} - \frac{4}{5}\vec{x}, \ \vec{\rho} = \frac{2}{3}\vec{y} + \frac{7}{15}\vec{x}.$$
 (2)

Прокомментируем используемые в расчетах модельные функции. Кластерная функция ядра 7 Li в $\{(dn)\alpha\}$ -модели определена следующим образом:

$$\Phi_{\tau_{Li}}^{\gamma} = \Phi_{000}^{\alpha}(1,2,3,4) \chi_{S_{\alpha}M_{S_{\alpha}}T_{\alpha}M_{T\alpha}}^{00,00} \Phi_{000}^{d}(5,6) \sum_{\substack{M,m_{r},m\\M_{S_{d}},m_{n},\mu}} \chi_{\frac{1}{2}m_{n}}^{(\sigma)}(7) \chi_{\frac{1}{2},-\frac{1}{2}}^{(\tau)}(7) \times \chi_{\frac{1}{2},-\frac{1}{2}}^{(\tau)}(7) \times \chi_{1M_{S_{d}}}^{(\sigma)}(5,6) \chi_{00}^{(\tau)}(5,6) C_{1M_{S_{d}}1/2m_{n}}^{1/2m_{n}} C_{1M_{1/2}m_{r}}^{3/2M_{i}} C_{\lambda\mu\mu lm}^{1M} \Phi_{l,\lambda}(\vec{r},\vec{\rho}),$$
(3)

где $\Phi^{\alpha}_{000}(1,2,3,4)$, $\Phi^{d}_{000}(5,6)$ – внутренние функции α -частицы и дейтрона соответственно, $\Phi_{l,\lambda}(\vec{r},\vec{\rho})$ – радиальные функции относительного движения α -частицы, дейтрона и нейтрона, которые можно представить в виде:

$$\Phi_{l,\lambda}(\vec{r},\vec{\rho}) = r^{\lambda} \rho^{l} \sum_{i} C_{i} e^{-\alpha_{i}\vec{r}^{2}} e^{-\beta_{i}\vec{\rho}^{2}} Y_{\lambda\mu}(\Omega_{r}) Y_{lm}(\Omega_{\rho}). \tag{4}$$

Коэффициенты C_i , α_i , β_i для функции (4) взяты из работы [3].

Функция ядра ${}^5\mathrm{He}\{\alpha n\}$ имеет следующий вид:

$$\Psi_{_{_{_{_{_{_{1}}}}}}He} = \Phi_{000}^{\alpha}(1,2,3,4) \chi^{S}(\alpha) \chi^{T}(\alpha) \sum_{M_{_{_{L}}},\tilde{m}_{_{n}}} (1M_{_{_{L}}}1/2 \tilde{m}_{_{_{n}}} | jm_{_{_{j}}}) \times \\
\times \chi_{\frac{1}{2}^{m_{_{_{n}}}}}^{(\sigma)}(7) \chi_{\frac{1}{2},-\frac{1}{2}}^{(\tau)}(7) Y_{1M_{_{L}}}(\vec{x}) \sum_{j} C_{j} e^{-\gamma_{j}\vec{x}^{2}}, \tag{5}$$

где j, m_j — полный угловой момент ядра ${}^5{\rm He}\{\alpha n\}$ и его проекция соответственно, а коэффициенты разложения C_j , γ_j представлены в [5].

Состояние дейтрона с полным моментом $J_{\scriptscriptstyle d}$ и его проекцией $M_{\scriptscriptstyle d}$ описывается функцией:

$$\Phi_{J_d M_d} = \sum_{\substack{S_d M_{Sd}, \\ L_d M_{Id}}} C_{\tilde{S}_d \tilde{M}_{Sd} L_d M_{Ld}}^{J_d M_d} \chi_{00}^{(r)} (5,6) \chi_{\tilde{S}_d \tilde{M}_{Sd}} (5,6) \cdot \Phi_{000}^d (5,6).$$
(6)

Наша цель — получить функции относительного движения 5 Не и d. Для этого необходимо вычислить интеграл перекрывания $\left\langle \Psi_{{}^5\text{He}}, \Phi_{J_d M_d} \, | \, \Phi_{{}^7\text{Li}} \right\rangle$. Интегрирование по переменной \vec{x} (рис. 1) приводит к следующему промежуточному результату:

$$\Psi(\vec{y}) = \left\langle \Phi_{_{_{_{_{_{_{_{1}}}}}}}} \Phi_{_{_{_{_{_{_{_{1}}}}}}}} \Phi_{_{_{_{_{_{_{1}}}}}}} \Phi_{_{_{_{_{_{1}}}}}} \Phi_{_{_{_{_{1}}}}} \right\rangle = \sum_{i,j} C_{i} C_{j} M^{(\sigma)} M^{(\tau)} Y_{00} (\Omega_{r}) \times \\
\times \sum_{\substack{M_{L}, M, m_{n} \\ M_{Sd}, \tilde{m}_{n}, m_{t}}} C_{1M_{L} \frac{1}{2}\tilde{m}_{n}}^{1/2m_{t}} C_{1M_{1/2}m_{t}}^{1/2m_{t}} \int \exp\left(-\alpha_{i}\vec{r}^{2} - \beta_{i}\vec{\rho}^{2} - \gamma_{j}\vec{x}^{2}\right) \cdot Y_{1M_{L}}^{*}(\vec{x}) \cdot Y_{1M}(\vec{\rho}) d\vec{x}, \tag{7}$$

где $M^{(\sigma)}$ и $M^{(\tau)}$ – спиновый и изоспиновый матричные элементы (МЭ).

Для вычисления радиального интеграла в выражении (7) проводим преобразование координат в соответствии с (2). Данная процедура приводит к следующей квадратичной форме в показателе экспоненты:

$$a_1 \vec{y}^2 + a_2 \vec{y} \vec{x} + a_3 \vec{x}^2 \,, \tag{8}$$

где
$$a_1 = \alpha_i + \frac{4}{9}\beta_i$$
; $a_2 = -\frac{8}{5}\alpha_i + \frac{28}{45}\beta_i$; $a_3 = \frac{16}{25}\alpha_i + \frac{49}{225}\beta_i + \gamma_j$.

Далее заменой переменных $\vec{x} = \vec{x}_1 + \alpha \vec{y}$, $\vec{y} = \vec{y}$ квадратичная форма (8) приводится к диагональному виду $d_1 \vec{y}^2 + d_2 \vec{x}_1^2$, где коэффициенты d_i определены следующим образом:

$$d_1 = a_1 + a_2 \alpha + a_3 \alpha^2, \ d_2 = a_3, \ \alpha = -a_2 / (2a_3). \tag{9}$$

Аналогичным образом преобразуем аргументы векторных сферических функций, входящих в интеграл (7). В итоге получаем:

$$\vec{x} = \vec{x}_1 + \alpha \vec{y}; \ \vec{\rho} = f_1 \vec{x}_1 + f_2 \vec{y},$$
 (10)

где $f_1 = 7/15$; $f_2 = 2/3 + 7\alpha/15$.

В результате радиальный интеграл в выражении (7) сводится к виду:

$$I(\vec{y}) = e^{-d_1 \vec{y}^2} \int e^{-d_2 \vec{x}_1^2} \left(Y_{1M_L}^* \left(\vec{x}_1 \right) + \alpha Y_{1M_L}^* \left(\vec{y} \right) \right) \cdot \left(f_1 Y_{1M} \left(\vec{x}_1 \right) + f_2 Y_{1M} \left(\vec{y} \right) \right) d\vec{x}_1. \tag{11}$$

Условие ортонормированности векторных сферических функций позволяет редуцировать выражение (11) к двум интегралам типа:

$$I_{1}(\vec{y}) = e^{-d_{1}\vec{y}^{2}} \int \alpha f_{2} e^{-d_{2}\vec{x}_{1}^{2}} Y_{1M_{I}}^{*}(\vec{y}) Y_{1M}(\vec{y}) d\vec{x}_{1}, \qquad (12)$$

$$I_{2}(\vec{y}) = e^{-d_{1}\vec{y}^{2}} \int f_{1}e^{-d_{2}\vec{x}_{1}^{2}} Y_{1M_{I}}^{*}(\vec{x}_{1}) Y_{1M}(\vec{x}_{1}) d\vec{x}_{1}.$$
 (13)

Приведем итоговые выражения для интегралов (12) и (13):

$$I_{1}(\vec{y}) = \frac{\sqrt{3}\pi\alpha f_{2}}{2d_{2}^{3/2}} e^{-d_{1}\vec{y}^{2}} y^{2} (-1) \sum_{\kappa m_{\kappa}} C_{\kappa m_{\kappa} 1 M}^{1 M_{L}} C_{1010}^{k0} Y_{\kappa m_{\kappa}}^{*} (\Omega_{y}),$$

$$(14)$$

$$I_{2}(\vec{y}) = \frac{3\sqrt{3}\pi f_{1}}{4d_{2}^{5/2}} \cdot e^{-d_{1}\vec{y}^{2}} \left(-1\right) \cdot \sum_{\kappa m_{\kappa}} C_{\kappa m_{\kappa} 1 M}^{1 M_{L}} C_{1010}^{k 0} Y_{\kappa m_{\kappa}}^{*} \left(\Omega_{y}\right). \tag{15}$$

Спиновый и изоспиновый матричные элементы тривиально сводятся к виду:

$$M^{(\sigma)} = \delta_{m_n \tilde{m}_n} \delta_{M_{S_d} \tilde{M}_{S_d}}; M^{(\tau)} = 1.$$
 (16)

Далее используем определение спина канала ${}^5{\rm He}\{\alpha n\}+d$: $\vec{s}_c=\vec{j}+\vec{S}_d$.

В итоге, для начальной $\{(dn)\alpha\}$ -конфигурации ядра 7 Li получаем окончательное выражение для функции относительного движения 5 He $\{\alpha n\}$ +d:

$$\Psi_{\kappa}(\vec{y}) = \frac{1}{\sqrt{4\pi}} \sum_{i,j} C_{i} C_{j} \sum_{\substack{s_{c}m_{c}, \\ \kappa m_{\kappa}}} Y_{\kappa m_{\kappa}}^{*} \left(\Omega_{y}\right) 2\sqrt{6(2j+1)} \cdot I_{\kappa}(y) (1010 \mid \kappa 0) \times \\
\times \begin{cases} 1/2 & 1 & 1/2 \\ s_{c} & 1 & j \end{cases} \begin{cases} 1 & 1/2 & 3/2 \\ s_{c} & \kappa & 1 \end{cases} \left(3/2 M_{i} \kappa m_{\kappa} \mid s_{c} m_{c}\right) \left(1 M_{S_{d}} j m_{j} \mid s_{c} m_{c}\right). \tag{17}$$

Здесь интеграл $I_{\kappa}(y)$ при значении относительного орбитального момента $\kappa=0$ (*S*-компонента) имеет вид:

$$I_{S}(y) = \frac{\sqrt{3}\pi\alpha f_{2}}{2d_{2}^{3/2}}e^{-d_{1}\vec{y}^{2}}y^{2} + \frac{3\sqrt{3}\pi f_{1}}{4d_{2}^{5/2}} \cdot e^{-d_{1}\vec{y}^{2}},$$
(18)

а при $\kappa = 2$ (*D*-компонента):

$$I_D(y) = \frac{\sqrt{3}\pi\alpha f_2}{2d_2^{3/2}} e^{-d_1 \vec{y}^2} y^2.$$
 (19)

Далее используем выражение (17) для вычисления спектроскопического S_d -фактора отделения дейтрона из ядра 7 Li:

$$S = \int |\Psi(\vec{y})|^2 d\vec{y} = (2s_c + 1) \int \left| \sum_{i,j} C_i C_j \cdot 2\sqrt{6(2j+1)} \cdot I_{\kappa}(y) \cdot (1010 \mid \kappa 0) \times \left\{ \begin{cases} 1/2 & 1 & 1/2 \\ s_c & 1 & j \end{cases} \right\} \left\{ \begin{cases} 1 & 1/2 & 3/2 \\ s_c & \kappa & 1 \end{cases} \right\}^2 y^2 dy.$$
(20)

Радиальные функции относительного 5 He+d -движения для $\{(\alpha d)n\}$ -конфигурации ядра 7 Li строятся аналогично.

В рамках данной работы были проведены расчеты радиальных функций относительного движения и спектроскопических S_d -факторов для канала ${}^5{\rm He}\{\alpha n\}+d$.

В таблице 1 приводятся результаты расчетов спектроскопических S_d -факторов в канале ${}^5{\rm He}+d$ и соответствующие веса $|S\rangle$ - и $|D\rangle$ -компонент функции относительного d ${}^5{\rm He}-d$ движения для моделей I(1)-I(2). Результаты расчетов сравниваются с данными работы [6] по многочастичной модели оболочек (ММО).

Таблица 1 — Результаты расчета спектроскопических S_d -факторов для канала 5 He $\{\alpha n\}+d$

Модель	S_0	S_2	P_S , %	P_D , %
I(1)	0,5588	0,3644	60,53	39,47
I(2)	0,5592	0,3645	60,54	39,46
Расчет ММО [6]	0,817	0,670	54,9	45,1

Как видно из выражения (17), радиальные волновые функции представляют собой суперпозицию нескольких компонент с алгебраической структурой, которая обозначена на рис.3. Отметим, что парциальные компоненты не интерферируют друг с другом в рамках расчета спектроскопических факторов, но по нашим оценкам интерференционные эффекты могут оказаться существенными для процесса реального расщепления ядра ⁷Li, в частности – при взаимодействии с протонами [7].

Как видно из рис. 2, полученные радиальные функции относительного движения ${}^5{\rm He}\{\alpha n\}+d$ являются безузловыми, что соответствует трансляционно-инвариантной модели оболочек (ТИМО) [8, 9].

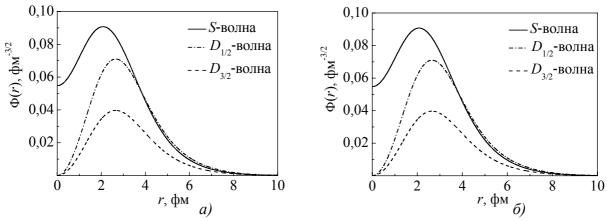


Рис. 2. Волновые функции относительного движения в канале 5 He + d : a – модель I(1); δ – модель I(2)

Из сравнения полученных значений S_d -факторов отделения дейтронов из ядра $^7{\rm Li}$ с аналогичными значениями, полученными в ММО [6], видно, что они примерно в 1,5 раза меньше.

Полученные радиальные функции относительного движения ${}^5{\rm He}\{\alpha n\}+d$ далее представлены в виде разложения по гауссовскому базису. Структура $|S\rangle$ -компоненты имеет вид:

$$\psi_{S}(y) = \sum_{m=1}^{15} [B_{m}e^{-\alpha_{m}\bar{y}^{2}}y^{2} + D_{m}e^{-\beta_{m}\bar{y}^{2}}], \qquad (24)$$

а $|D\rangle$ -компоненты:

$$\psi_{D_{1/2}}(y) = \sum_{i=1}^{15} C_i e^{-\gamma_i \vec{y}^2} y^2; \quad \psi_{D_{3/2}}(y) = \sum_{i=1}^{15} B_i e^{-\alpha_i \vec{y}^2} y^2.$$
 (25)

Коэффициенты разложения функций (24), (25) представлены в таблицах 2-5.

Таблица 2 — Коэффициенты разложения ВФ относительного движения 5 Не $\{\alpha n\}+d, |S\rangle$ -компонента. Модель I(1)

	, , , , ,	I		
№	$\alpha_{_m}$	B_m	$oldsymbol{eta}_{\scriptscriptstyle m}$	D_{m}
1	0,771442540D-02	0,398909683D-09	0,655830941D-02	0,985989659D-06
2	0,233141905D-01	-0,166042963D-07	0,198202286D-01	-0,360799528D-04
3	0,394421226D-01	0,663240227D-07	0,335311615D-01	0,524523413D-03
4	0,565047881D-01	0,968388242D-05	0,480367447D-01	-0,423587716D-02
5	0,750021491D-01	0,173543301D-02	0,637620140D-01	0,259076688D-01
6	0,955928016D-01	0,305149183D-03	0,812668654D-01	0,239722634D-02
7	0,119200215D+00	0,180149326D-02	0,101336373D+00	0,816278119D-01
8	0,147200007D+00	-0,162618122D-02	0,125139999D+00	-0,136682976D+00
9	0,181776870D+00	0,183412262D-01	0,154535030D+00	0,196172100D+00
10	0,226668135D+00	-0,345061832D-02	0,192698702D+00	-0,459071984D-01
11	0,288896284D+00	0,865964698D-03	0,245601081D+00	-0,394737849D-01
12	0,383469139D+00	-0,387655703D-02	0,326000854D+00	0,612316925D-03
13	0,549357934D+00	-0,112813639D-04	0,467028861D+00	-0,262316045D-01
14	0,929384369D+00	0,360102004D-05	0,790102949D+00	0,100723861D-03
15	0,280874459D+01	-0,134943865D-06	0,238781440D+01	-0,110804161D-05

Таблица 3 — Коэффициенты разложения ВФ относительного движения ${}^5{\rm He}\{\alpha n\}+d,\ |D\rangle$ -компонента. Модель I(1)

No	$\alpha_{\scriptscriptstyle m}$	B_m	$oldsymbol{eta}_{m}$	D_m
1	0,771442540D-02	0,398909683D-09	0,655830941D-02	0,985989659D-06
2	0,233141905D-01	-0,166042963D-07	0,198202286D-01	-0,360799528D-04
3	0,394421226D-01	0,663240227D-07	0,335311615D-01	0,524523413D-03
4	0,565047881D-01	0,968388242D-05	0,480367447D-01	-0,423587716D-02
5	0,750021491D-01	0,173543301D-02	0,637620140D-01	0,259076688D-01
6	0,955928016D-01	0,305149183D-03	0,812668654D-01	0,239722634D-02
7	0,119200215D+00	0,180149326D-02	0,101336373D+00	0,816278119D-01
8	0,147200007D+00	-0,162618122D-02	0,125139999D+00	-0,136682976D+00
9	0,181776870D+00	0,183412262D-01	0,154535030D+00	0,196172100D+00
10	0,226668135D+00	-0,345061832D-02	0,192698702D+00	-0,459071984D-01
11	0,288896284D+00	0,865964698D-03	0,245601081D+00	-0,394737849D-01
12	0,383469139D+00	-0,387655703D-02	0,326000854D+00	0,612316925D-03
13	0,549357934D+00	-0,112813639D-04	0,467028861D+00	-0,262316045D-01
14	0,929384369D+00	0,360102004D-05	0,790102949D+00	0,100723861D-03
15	0,280874459D+01	-0,134943865D-06	0,238781440D+01	-0,110804161D-05

Таблица 4 — Коэффициенты разложения ВФ относительного движения ${}^5{\rm He}\{\alpha n\}+d,\ |S\rangle$ -компонента. Модель I(2)

No	$\alpha_{_m}$	B_{m}	$oldsymbol{eta}_{m}$	D_m
1	0,990559733D-02	-0,166442415D-10	0,990559421D-02	-0,997009142D-08
2	0,299362520D-01	-0,667192465D-08	0,299362426D-01	0,708488339D-06
3	0,506450921D-01	0,749363375D-06	0,506450761D-01	-0,117056989D-04
4	0,725541631D-01	0,143506812D-02	0,725541402D-01	0,401483985D-01
5	0,963054343D-01	0,100539796D-02	0,963054039D-01	0,134721943D-01
6	0,122744566D+00	0,347578649D-03	0,122744528D+00	-0,159596128D-01
7	0,153057327D+00	0,283550723D-02	0,153057279D+00	0,590873481D-01
8	0,189010058D+00	0,165933140D-01	0,189009999D+00	0,827742408D-01
9	0,233407984D+00	-0,702759026D-02	0,233407911D+00	-0,129141143D+00
10	0,291049969D+00	0,273153114D-02	0,291049877D+00	0,513158958D-01
11	0,370953132D+00	-0,241344897D-02	0,370953015D+00	-0,328808748D-01
12	0,492388051D+00	-0,151980809D-02	0,492387895D+00	-0,144909259D-01
13	0,705395179D+00	0,411802873D-04	0,705394956D+00	0,474198147D-03
14	0,119336268D+01	-0,142906958D-05	0,119336230D+01	-0,223039300D-04
15	0,360652822D+01	0,214661280D-06	0,360652708D+01	0,597637532D-06

Таблица 5 — Коэффициенты разложения ВФ относительного движения ${}^5{\rm He}\{an\}+d,\ |D\rangle$ -компонента. Модель I(2)

№	$\alpha_{_m}$	B_m	$oldsymbol{eta}_{m}$	D_m
1	0,990559733D-02	-0,166442415D-10	0,990559421D-02	-0,997009142D-08
2	0,299362520D-01	-0,667192465D-08	0,299362426D-01	0,708488339D-06
3	0,506450921D-01	0,749363375D-06	0,506450761D-01	-0,117056989D-04
4	0,725541631D-01	0,143506812D-02	0,725541402D-01	0,401483985D-01
5	0,963054343D-01	0,100539796D-02	0,963054039D-01	0,134721943D-01
6	0,122744566D+00	0,347578649D-03	0,122744528D+00	-0,159596128D-01
7	0,153057327D+00	0,283550723D-02	0,153057279D+00	0,590873481D-01
8	0,189010058D+00	0,165933140D-01	0,189009999D+00	0,827742408D-01
9	0,233407984D+00	-0,702759026D-02	0,233407911D+00	-0,129141143D+00

10	0,291049969D+00	0,273153114D-02	0,291049877D+00	0,513158958D-01
11	0,370953132D+00	-0,241344897D-02	0,370953015D+00	-0,328808748D-01
12	0,492388051D+00	-0,151980809D-02	0,492387895D+00	-0,144909259D-01
13	0,705395179D+00	0,411802873D-04	0,705394956D+00	0,474198147D-03
14	0,119336268D+01	-0,142906958D-05	0,119336230D+01	-0,223039300D-04
15	0,360652822D+01	0,214661280D-06	0,360652708D+01	0,597637532D-06

Результаты расчетов спектроскопических S_d -факторов в канале 5 He+d для моделей II(1)- II(3) и III(1)-III(2) волновой функции ядра 7 Li представлены в таблицах 6 и 7.

Таблица 6 — Спектроскопические S_d -факторы отделения дейтронов в канале ${}^5{\rm He}\{\alpha n\}+d$ и весовые множители S- и D-компонент для значения спина $\{nd\}$ -кластера S=1/2

Модель	S_0	S_2	P_S , %	P_{D} , %
II(1)	1,44568	0,00471	99,68	0,32
II(2)	1,44793	0,00467	99,68	0,32
II(3)	1,40803	0,00267	99,81	0,19
III(1)	1,34492	0,00183	99,86	0,14
III(2)	1,37354	0,00280	99,80	0,20

Таблица 7 — Спектроскопические S_d -факторы отделения дейтронов в канале 5 He $\{\alpha n\}+d$ и весовые множители S- и D-компонент для значений спина $\{nd\}$ -кластера S=1/2; 3/2

Модель	S_0	S_2	P_S , %	P_D , %
II(1)	0,01611	0,00890	64,41	35,59
II(2)	0,01614	0,00885	64,59	35,41
II(3)	0,01569	0,00505	75,66	24,34
III(1)	0,01499	0,00346	81,23	18,77
III(2)	0,01531	0,00531	74,26	25,74

Следует отметить, что здесь возникает очень тонкая ситуация, связанная со спинспиновым взаимодействием nd-пары $\hat{\vec{S}}_n\hat{\vec{S}}_d$. Дело в том, что в случае $\{(nd)\alpha\}$ -конфигурации 7 Li (рис. 1) нейтрон и дейтрон образуют скоррелированный тритиевый кластер с квантовыми числами свободного трития, т.е. спин фиксирован и равен S=1/2.

Что касается $\{(\alpha d)n\}$ -конфигурации ядра 7 Li, то в этом случае скоррелированы α -частица и дейтрон, и суммарный спин nd-пары в этом случае принимает два значения S=1/2; 3/2. В настоящих расчетах предполагается, что волновые функции для S=1/2 и S=3/2 одинаковые, что соответствует случаю, когда спин-спиновое взаимодействие не учитывается. Рис. 4 иллюстрирует соотношение соответствующих компонент.

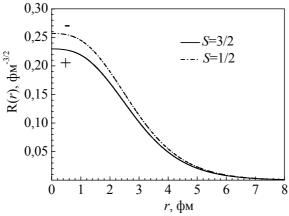


Рис.3. S-компонента волновой функции относительного движения ⁵He+d (модель II (2))

Как видно из рисунка 3, данные компоненты волновой функции для S=1/2 и S=3/2 практически совпадают по абсолютному значению и имеют противоположный знак. Это приводит к их взаимной компенсации. Как результат, соответствующие спектроскопические факторы малы и имеют порядок 10^{-3} (таблица 7). Если же в расчетах учитывать только значение S=1/2, то это приводит к завышенному весу канала 5 He $\{\alpha n\}$ +d (таблица 6).

Таким образом, представляется актуальным для дальнейшего развития трехтельной $\{(\alpha d)n\}$ -модели 7 Li обратить внимание на этот эффект и по возможности включить в рассмотрение $\hat{\vec{S}}_n\hat{\vec{S}}_d$ спин-спиновое взаимодействие.

Литература

- 1. Афанасьева Н.В., Буркова Н.А., Жаксыбекова К.А. Проектирование волновой функции $^7\text{Li}\{\alpha t\}$ на $^5\text{He}\{\alpha n\}+d$ кластерный канал. І Элементы формализма // Вестник КазНУ, серия физическая. №3(38) 2011. С. 26-31.
- 2. Афанасьева Н.В. Проектирование волновой функции 7 Li $\{\alpha t\}$ на 5 He $\{\alpha n\}$ +d кластерный канал. II Результаты расчетов // Вестник КазНУ, серия физическая. №3(38) 2011. С. 32-35.
- 3. Дубовиченко С.Б. Методы расчета ядерных характеристик. Алматы: Комплекс. 2006. 311с.; http://arxiv.org/abs/1006.4947.
- 4. Афанасьева Н.В., Буркова Н.А., Жаксыбекова К.А., Уразалин А.А. Бинарная $\{\alpha t\}$ -компонента в $\{(dn)\alpha\}$ и $\{(\alpha d)n\}$ -моделях ядра 7 Li // Настоящий сборник.
- 5. Афанасьева Н.В., Буркова Н.А., Жаксыбекова К.А., Уразалин А.А. Виртуальный канал распада 7 Li → 5 He+d . // Вестник КазНУ. Сер. физ. 2010. № 4(35). С. 3-8.
 - 6. Бояркина А.Н. Структура ядер 1р-оболочки. Москва: Изд. МГУ, 1973. 62 с.
- 7. Junghans G., Bangert K. et al. The Photodisintegration of ⁶Li and ⁷Li. // Z. Physik A. 1979. V. 291. P. 353-365.
- 8. Неудачин В.Г., Смирнов Ю.Ф. Нуклонные ассоциации в легких ядрах.- М.: Наука, 1969. 414 с.
- 9. Немец О.Ф., Неудачин В.Г., Рудчик А.Т., Смирнов Ю.Ф., Чувильский Ю.М. Нуклонные ассоциации в легких ядрах и ядерные реакции многонуклонных передач.- Киев: Наукова Думка, 1988. 488 с.

5 Не $\{\alpha n\}$ + d КЛАСТЕРЛІ КАНАЛЫНА $\{(dn)\alpha\}$ - ЖӘНЕ $\{(\alpha d)n\}$ - ҮЛГІЛЕРІНДЕГІ 7 Lі $\{\alpha t\}$ ТОЛҚЫНДЫҚ ФУНКЦИЯСЫН ЖОБАЛАУ

Н.В. Афанасьева, Н.А. Буркова, К.А. Жақсыбекова, А.А. Уразалин

 7 Li ядросының αdn жобасы негізінде 5 He + d салыстырмалы қозғалысының радиалды толқындық функциялары құрылды және спектроскпиялық S_{d} -факторлары есептелінді.

PROJECTION OF THE 7 Li WAVE FUNCTION IN THE $\{(dn)\alpha\}$ - AND $\{(\alpha d)n\}$ -MODELS ON THE 5 He $\{\alpha n\}$ +d CLUSTER CHANNEL

N.V. Afanasyeva, N.A. Burkova, K.A. Zhaksybekova, A.A. Urazalin

Within the three-body αdn -model for ⁷Li nucleus the ⁵He+d relative-motion wave functions have been obtained and spectroscopic S_d -factors of neutron separation has been calculated.