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Immediate challenges faced by the quantum computing in time series analysis

We considered a few aspects of quantum computing in connection with the time series analysis. Quantum
Fourier Transform was selected as a test example due to its important practical value in spectral analysis,
the easiness of implementation and its generic nature with respect to many other quantum algorithms. The
obvious drawbacks have been identified preventing the straightforward application of Quantum Fourier
Transform to the evolving times series. The limited available register size of a quantum computer may
be an issue at the data postprocessing stage, but carry significant practical value if included into the data
acquisition stage. The analyzed qubit by qubit procedure is favoring the way most of the time series are
acquired, which is one at a time. This procedure should be necessarily considered with the decoherence issue
for the big quantum systems and long evolution times.
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A.C. Kycaunos, A.T. Kapumona, C.I. Kycaunos, H.E. I1s
Bomnpocsl npuMeHeHNsI KBAHTOBBIX BHIYHCIEHUI B aHAN3€e BPEeMEHHBIX PSI0B

Hamu paccMOTpeHbI HEKOTOPbIE aCHIEKThI KBAHTOBBIX BBIYMCICHUN IPUMEHUTENIFHO K aHATU3Y BPEeMEHHBIX
psnoB. KBanroBoe npeoOpazoBanre Oypbe ObLIIO BBIOPAHO B KaueCTBE MHCTPYMEHTA aHaJM3a M3-3a €ro
OO0JIBILIOTO TTPAKTUYECKOTO 3HAUCHHUSI B CIIEKTPAJILHOM aHAJIM3€ M €T0 BaYKHOM poiin B pOPMYIHPOBKE APYTUX
KBaHTOBBIX aJITOPUTMOB. BBl 00HApYKEHBI OYEBUAHBIC TPYTHOCTH B IPUMEHEHUH KBAHTOBOTO Ipeodpa-
30BaHus Pypbe K aHAIN3Y BPEMEHHBIX PsI0B. Mablil pa3Mep KBAaHTOBOTO PETHCTpa MaMsITH HAKIIaAbIBACT
CepbE3HBIC OTPAHNYEHHS TPU 00pabOTKE OONBIIIOT0 MacCHBa YK€ 3apErHCTPUPOBAHHBIX JAHHBIX, HO MOXKET
JIaBaTh CYIIECTBEHHOE MPEUMYIIIECTBO IPU HEMOCPEICTBEHHOM BKIIIOUYCHHUHN €T0 B CXEMY PETHUCTpPAIlUH He-
MIPEPBIBHOTO TIOTOKA JJaHHbIX. Mcnonb3yemast modurosas cxema rpeobpazoBanus Oypbe XOpOIIO coracy-
€TCsl C MOCJIEA0BATENbHBIM MEXaHU3MOM PErUCTpallii BPEMEHHBIX pAJ0B. MHOro4acTH4HbIE KBAHTOBBIE
CHCTEMBI M ITPOJJOIDKUTEIILHBIC BpEMEHA IBOIOLNH, BO3HUKAIONIME MIPU PEAIN3allMi KBAaHTOBBIX allTOPHT-
MOB, HAaKJIaJJbIBAIOT OTPAHNYCHHNS HA TIPAKTUYECKYIO PEaIN3aINIO 3TON CXEMBI.

Kniouegvie cno6a: KBaHTOBBIE BHIYUCIICHUS, KyOUT, BDEMEHHOM pAJ, anroput™, Oypbe npeodpazoBaHue.

A.C. Kycaiieinos, A.T. Kapumosa, C.T'. Kycaiisinos, H.E. [1s
YakbITTBIK KaTapiaapabl TAJI/1ay1a KBAHTTBIK ecenTeyJiepi KoJAaHy Macesesepi

Byn makamama yakpITTBIK KaTapiapAsl Tajnaygarbl KBaHTTBHIK €CENTeylaepAiH Oipkarap acmekTiiepi
KapacTeIpbiIFaH. DypheHIH KBAaHTTHIK TYPJICHAIPYIHIH Kypasl PeTiHAe TaHaal ajblHFaH ce0edi - OHBIH
CHEKTPaJJbl aHAIN3E YJIKEH TOHKIpUOETIK MOHIe Me eKeHIIri, opi 0acka Ja KBaHTTBHIK aJll'OPUTMAEPAI
TYKBIPBIMJAyJla MaHBI3[bl POJ aTKApaThIHJBIFEI OONBIN TaOBLIAJBI. YaKBITTBIK Karapiapisl Tajijaay-
na DypbeHIH KBaHTTHIK TYPICHIIPYIH KOJIAAaHy Ke3iHJe alKbIH Keieprijiep aHblKTauabl. KBaHTTHIK
JKaJbl PETUCTPIHIH IIAFBIH KOJeMIi OONyBl TIPKEITeH MOJIIMETTepAiH YIIKEH MAacCHUBIH OHJICTCHE YIKCH
HIeKTeyIep KOAIBI, ajaiga ol MONIMETTepi TipKey cyi0achlHa TiKeNed KOCBUIFaH Ke3zle, alTapibIKTai
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apTHIKIIBUIBIKTap Oepe anajbl. Konmansuibin oteipran @ypee TypleHipyiHiH op Oesiiek xyOblHa apHaJFaH
cyi10achl yakpITIa KaTapiap/bl TIpKEY/iH XKYHell MeXaHn3MIMEH KaKchl yineceai. KenbemeKkTi KBaHTTHIK
JKYHelep MeH 9BOJTIOLUSHBIH XKaJIFacy YaKbITTaphl OChI CXEMaHBIH TXKIPHOEIIK iCKe acybIHA MIEKTEY KOSI/IBL.
Tyitin ce30ep: KBaHTTHIK ecenTeyiep, KyOuT, yakbITTBIK Karap, anroputM, Oypee TypiaeHaipyi.

Introduction

In the early 80s, Feynman [1, 2] outlined the
computational capabilities of a quantum system.
He showed that a group of computational problems
exists and it could be addressed, in terms of success
in finding solution, only by means of a quantum
computer. The properties of such machine, the
existence of a quantum mechanical simulator (or
emulator) of the Turing machine [3], and its practical
effectiveness was shown by Deutsch [4]. The
following rapid growth of publications ad-dressing
the algorithms and physical implementations of
such computers followed, and is illustrated by the
ScienceWatch.com web database maintained by

Thomson Reuters [5]. Among these algo-rithms is
the Quantum Fourier Transform (QFT). Though
not attributed in name, partly due to its apparent
simplicity, to anyone but a Fourier, it is an essential
part of many other algorithms, includ-ing Shor’s
discrete logarithm and factoring algorithms [6, 7].
Besides well known classical applica-tions in a
spectral analysis aside, Quantum Fourier Transform
has its unique applications in phase estimation,
order-finding and hidden subgroup problem [8].
The quantum Fourier transform (QFT) acts on
a quantum state. Defined to reproduce the clas-sical
discrete Fourier transform (FT) it says that any
superposition of the basis states such as
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If we rewrite the phase factors w=e"’=i,
w’=e™=-] and etc, the 2-qubit quantum Fourier
transform (for example the one acting on the bases
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which is a Vandermonde matrix. It is easier to work
with the number of states N equals to some power

0,

|00), |01), |10), [11) of a two spin system) will be
described by multiplication with the unitary matrix
F of the following form
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and they are constitute the computational basis for an n qubit quantum computer. If we to adopt the binary

representation for integer number

J=Jijaeds OF =27 4 2" 4,20, (5)

and for binary fraction

0.j juod, thatis ji /24, /4+..+j, /2", (6)

any QFT may be written as the operator product, see [9]

(| O) 4 210

1>)(| 0> 4 270 |1>) . (| O> 4 20 |1>)

Jidaseees J3) =

The described qubit by qubit procedure is
favoring the way most of the time series are ac-
quired, which is one at a time. This procedure should
be necessarily considered with the decoher-ence
issue for the big quantum systems and long evolution
times. That is probably the only differ-ence that
sets aside time series from the other data types and
connects it to the QFT described by Eq.(7). It is also
sufficient for real time data processing, where the
whole array is not available for immediate analysis.

Experimental results and Discussions

Below is a data sample acquired by a single
channel of Tian-Shian high elevation mounting
station [10] in a period between November 21st,
2012 and November 30th, 2012.

The raw data of the period of about five days
are shown in figures 1 (a). The Fourier trans-form
coefficients of these data are shown to the right

n : (7

22

side of the figure, see Fig.1 b) and d). Anoth-er set,
derived from original by the moving average and
baseline subtraction, is shown in figure 1(c).

The first set of the Fourier coefficients looks
more like a white noise than a signal. However, the
FT of the cleaned data shows the expected one day
periodicity, as well as the other features typ-ical
for a discrete Fourier transform of the truncated
data set. The 3, 5 and 7 days maxima are most
probably influenced by data multiplication with
the rect function of the period of 5 days together
transformed by FT into convolution with a sinc
function.

Let us assume now that we acquiring our data
in small portions equal to the register size. Slid-
ing window of acquisition is straightforwardly
described by Eq.(8), where the width of the rect
function is determined by the register size of a
quantum computer

rect(t — At) —ZL— e sind(£) . (®)

Everything else outside the sliding rect(t-At)
function is zero, padded to the size of the final
data set. Additional phase shift may be treated by
a quantum circuitry as uninterrupted evolution
in time though the phase control and readout
remain an issue. The register size still needs to
be big enough to accommodate the whole 5 days
data chunk, which is about 15 thousands counts,
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one per each second.

An alternative method is called the overlap-
add method [11]. The method still depends on
the number of registers available, but it relies on,
stitching together the pieces of FT on a smaller
amount of data. In ideal reconstruction procedure
we will end up no further than the scenario shown
on Fig.1 ¢).
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a) y(t)

4800
4700 |
4600
4500
4400

4300

0 1 2 3 4 5
time, days

¢) Moving average on 12 minutes basis of y(t)

time, days

b) Single-Sided Amplitude Spectrum of y(t)

60
50

2 4 6 8
Frequency (days'1)
d) Single-Sided Amplitude Spectrum of y(t)

Frequency (days'1)

Figure 1 — From top to the bottom and from left to the right. a) Unfiltered five and a half days data from a single
acquisition channel of 18NM64 neutron monitor (Y axis displays the neutron’s counts), b) its Fourier transform
coefficients’ absolute values, c) original signal averaged and sub-tracted with the baseline (Y axis displays the arbitrary
units) and d) its Fourier transform coeffi-cients’ absolute values.

Conclusions

So far, the closest connection point with
the quantum computing is its time delayed data
availability matching the consecutive execution of
the scheme described by Eq.(7). The straightfor-
ward approach by means of segmented or windowed
Fourier transform most likely will not work if used
in the final post processing stage. Acquisition

process, that is detection and measurements, may
be integrated into quantum state preparation stage.
Further investigations in terms of incorporating it
in the acquisition board is needed, and promises
to be more fruitful. The search for applications
based on a small amount of qubits available for
computational tasks in time series analysis should
be continued.
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