Раздел 4

Section 4

Ядролық физика

Ядерная физика Nuclear Physics

УДК 539.173

А. Дуйсебаев, Б.А. Дуйсебаев, Т.К. Жолдыбаев^{*}, Б.М. Садыков

РГП Институт ядерной физики, Казахстан, г. Алматы *E-mail: <u>zholdybayev@inp.kz</u>

Процессы рассеяния нуклидов ³He, ⁴He с E = 50,5 и 60 MэB на ядрах ²⁴Mg

Изложены новые экспериментальные результаты по упругому и неупругому рассеянию нуклидов ³He, ⁴He при энергиях 50 и 60 МэВ с возбуждением состояний 1,37 и 4,12 МэВ ядра ²⁴Mg. Представлен литературный обзор.

Анализ сечений упруго-рассеянных нуклидов ³He, ⁴He на исследуемом ядре выполнен в рамках стандартной оптической модели ядра с потенциалом Вудса-Саксона с разделенными формфакторами вещественной и мнимой частей. Получены оптимальные значения потенциалов межъядерного взаимодействия. При этом в качестве критерия соответствия результатов теоретических расчетов экспериментальным данным наряду с минимизацией величины χ^2 использовались и значения объемных интегралов от действительной части оптического потенциала.

Анализ сечений неупруго-рассеянных ионов гелия на ядрах ²⁴Mg проводился методом искаженных волн с макроскопическим формфактором коллективного возбуждения с использованием полученных из упругого рассеяния оптимальных параметров оптического потенциала. Также проведен анализ методом связи каналов, где расчет выполнялся с учетом как упругого, так и неупругих каналов, определено значение параметра квадрупольной деформации $\beta_2 = 0.36 - 0.34$ ядра²⁴Mg.

Ключевые слова: упругое и неупругое рассеяние, нуклиды гелия, оптическая модель, оптический потенциал, метод искаженных волн, метод связанных каналов.

А. Дүйсебаев, Б.А. Дүйсебаев, Т.К. Жолдыбаев, Б.М. Садықов E = 50,5 және 60 МэВ-те²⁴ Мg ядроларында ³Не⁴Не нуклидтерінің шашырау процестері

50 және 60 МэВ энергияларда 1,37 және 4,12 МэВ энергиялы ²⁴Мg ядросының күйлерін қоздырумен ³He, ⁴He нуклидтерінің серпімді және серпімсіз шашыраулары бойынша жаңа эксперименттік нәтижелер баяндалды. Әдеби шолу ұсынылды.

Зерттелетін ядрода заттық және жорамал бөліктерінің бөлінген пішін-факторлары бар Вудс-Саксон потенциалды ядроның стандартты оптикалық моделі аясында ³He, ⁴He нуклидтерінің серпімді-шашырау кималарына талдау жасалды. Ядроаралық әрекеттесу потенциалдарының оңтайлы мәндері алынды. Бұл жағдайда эксперименттік деректермен жасалған теориялық есептеу нәтижелерінің сәйкестік критерийі ретінде χ^2 шамасының минимизациясымен қатар оптикалық потенциалдың нақты бөліктерінен алынған көлемдердің мәндері де қолданылды. ²⁴Мg ядроларындағы гелий иондарының серпімсіз-шашырау қималарының талдауы серпімді шашыраудан

²⁴Мg ядроларындағы гелий иондарының серпімсіз-шашырау қималарының талдауы серпімді шашыраудан алынған оптикалық потенциалдың оңтайлы параметрлерін қолдана отырып бірлескен қозудың макроскопиялық пішін-факторы бар бұрмаланған толқындар әдісі арқылы жүргізілді. Сонымен қатар арналар байланысы әдісімен талдау жүргізілді, онда серпімді де, сондай-ақ серпімсіз арналарды да есепке ала отырып есептеу орындалды, ²⁴Мg ядросының $\beta_2 = 0,36 - 0,34$ квадрупольдік деформациясы параметрінің мәні анықталды.

Түйін сөздер: серпімді және серпімсіз шашырау, гелий нуклидтері, оптикалық модель, оптикалық потенциал, бұрмаланған толқындар әдісі, байланысқан арналар әдісі.

A. Duisebayev, B.A. Duisebayev, T.K. Zholdybayev, B.M. Sadykov Scattering processes of nuclides 3 He, 4 He with E = 50,5 and 60 MeV on 24 Mg nuclei

New experimental results on elastic and inelastic scattering of nuclides ³He, ⁴He at energies 50 and 60 MeV of for ²⁴Mg at excited state 1.37 and 4.12 MeV are presented. The literature review is done.

The analysis of cross-sections of elastically scattered nuclides ³He, ⁴He on studied nucleus was performed using standard optical model with Woods-Saxon potential with separated form-factors of real and imaginary parts. The optimal values of inter-nuclear interaction potentials are obtained. As a criterion for matching the results of theoretical calculations with experimental data the minimization of the χ^2 values and the values of the volume integrals of the real part of the optical potential were used.

Analysis of cross sections of inelastic scattered ions of helium nuclei ²⁴Mg was carried out using the distorted waves with form-factor of a macroscopic collective excitation using optimal optical potential parameters obtained from elastic scattering. The analysis by the method of coupled channels, where the calculation was performed taking into account both the elastic and inelastic channels was done. The quadrupole deformation parameter $\beta_2 = 0.36 - 0.34$ of nucleus ²⁴Mg was defined.

Key words: elastic and inelastic scattering, helium nuclides, optical model, optical potential, method of distorted waves, coupled-channel method.

Введение

Определение межъядерного потенциала взаимодействия сложных частиц (нуклидов водорода, гелия) с ядрами остается одной из приоритетных задач ядерной физики низких и средних энергий. Исходная информация о нем извлекается из анализа экспериментальных дифференциальных сечений упругого рассеяния частиц и ядер с ядрами с последующим их анализом в рамках оптической модели (ОМ) ядра [1]. Проблема неоднозначности параметров потенциала, присущих этому подходу, могут быть сокращены при постановке экспериментов в максимально полном угловом диапазоне с измерением сечений как упругого, так и неупругого рассеяния.

Экспериментальные данные по рассеянию нуклидов гелия на ядрах 24 Mg при E = 50 – 60 МэВ отсутствуют, тогда как именно в этой области энергий проявляются эффекты «аномального рассеяния» назад (АРН) и «ядерной радуги» (ЯР), обусловленные преломляющими свойствами потенциала.

Эксперимент

Экспериментальные исследования упругого рассеяния на ядрах ²⁴Mg проводились на выведенном пучке ионов ³He с энергией 60 МэВ и ⁴He энергией 50,5 МэВ, ускоренных на изохронном циклотроне У–150М ИЯФ [2]. В настоящей работе определены сечения неупругого рассеяния нуклидов гелия при тех же энергиях с возбуждением состояний 1,37 и 4,12 МэВ ядра ²⁴Mg. Регистрация и идентификация рассеянных частиц осуществлялась спектрометрическим блоком, состоящим из

поверхностно-барьерных кремниевых ДBVX детекторов (ΔЕ-Е – метод) фирмы ORTEC: пролетного – ΔE и полного поглощения – E, толщина которых выбиралась в зависимости от энергии рассеянных частиц и изменялась для Е счетчика в пределах от 500 мкм до 1 мм, а для ΔE счетчика – от 18 мкм до 100 мкм. Полное энергетическое разрешение спектрометрического тракта составляло ~500 кэВ и определялось, в основном, энергетическим разбросом первичного пучка ускоренных ионов гелия. После предварительного отбора по времени и амплитуде в спектрометрических каналах импульсы от ($\Delta E-E$) телескопа поступали на вход системы многомерного программируемого анализа с идентификацией продуктов ядерных реакций [3].

В качестве ядра-мишени использовалась самонесущая, изготовленная методом термического испарения, тонкая пленка из обогащенного изотопа $^{24}Mg - 99,1\%$ со средней эффективной толщиной 1 мг/см². Толщина мишени определялась методом взвешивания, а также по потерям энергии α -частиц радиоактивного источника $^{241}Am - ^{243}Am - ^{244}Cm$ с точностью 6 – 9%.

Угловые распределения рассеянных ионов на изотопе ²⁴Mg измерены в диапазоне углов $12 - 172^0$ в лабораторной системе координат с шагом ~ $2 - 3^0$. Полная погрешность измеренных сечений не превышала 10%, где вклад статистических ошибок составляет (1 - 3)% для неупругого рассеяния и погрешность калибровки интегратора тока (~1%).

На рис. 1–2 совместно с нашими данными приведены имеющиеся экспериментальные

сечения упругого рассеяния ⁴Не на ядре ²⁴Мg при энергиях 18 МэВ [4], 22,2 МэВ [5], 24,2 МэВ [6], 40 МэВ [7], 65,7 МэВ [8], 104 МэВ [9] и 120 МэВ [10], а также ионов ³Не при энергиях 33,3 МэВ[11], 35,7 МэВ [12] и 130 МэВ [13].

Рисунок 1 – Экспериментальные сечения упругого рассеяния ионов 4 He на ядре 24 Mg

Рисунок 2 – Экспериментальные сечения упругого рассеяния ионов 3 He на ядре 24 Mg

Из них следует, что в интервале обратных углов 120-170⁰ в экспериментальных сечениях упругого рассеяния ионов ⁴Не осцилляции и эффекты аномального рассеяния назад четко проявляются вплоть до энергии 50 МэВ и исчезают при больших энергиях.

В случае упругого рассеяния ионов ³Не выраженная дифракционная структура проявляется в области углов до 160° при относительно низких энергиях – 35,7 МэВ. При энергии ³Не 60 МэВ осцилляции вырождаются, но начиная с угла 120°, наблюдается резкий рост сечения, обусловленный АРН. При энергии 130 МэВ происходит крутой спад сечения по экспоненте.

Анализ данных

Анализ экспериментальных данных

упруго-рассеянных ионов ³He, ⁴He на ядрах ²⁴Mg выполнен в рамках стандартной OM [1], построенной на основе предположения о возможности описания взаимодействия нуклона или ядра с ядром комплексным потен-

циалом. Его действительная часть ответственна за рассеяние нуклона (ядра), а мнимая – за поглощение. Используемое в модели волновое уравнение Шредингера с комплексным потенциалом имеет вид

$$\hbar^2 / 2\mu \cdot \nabla^2 \cdot \Psi(\vec{r}) + \left[E - U(\vec{r}) \right] \cdot \Psi(\vec{r}) = 0 , \qquad (1)$$

где $\Psi(\vec{r})$ – волновая функция частицы, U(r) – комплексный потенциал взаимодействия, Е – кинетическая энергия относительного движения в системе центра масс, μ – приведенная масса сталкивающихся систем. В качестве комплекс-

ного потенциала U(r), как правило, используется потенциал Вудса-Саксона с разделенными формфакторами вещественной и мнимой частей, причем не только с разными радиусами, но и различной радиальной зависимостью мнимой части, вводя объемное

$$U(\vec{r}) = V(1 + \exp\frac{r - R_{\nu}}{a_{\nu}})^{-1} + iW_{\nu}(1 + \exp\frac{r - R_{w}}{a_{w}})^{-1} + V_{c}(r), \qquad (2)$$

либо поверхностное поглощение

$$U(\vec{r}) = V(1 + \exp\frac{r - R_{\nu}}{a_{\nu}})^{-1} + 4iW_{s}\frac{d}{dr}\left[1 + \exp\frac{r - R_{w}}{a_{w}}\right]^{-1} + V_{c}(r).$$
(3)

Ядерная часть такого потенциала характеризуется вещественной V_0 и мнимой W_0 составляющими в центре ядра, его диффузностью a_W на периферии и радиусом потенциала $R_W = r_0 A^{1/3} \phi_M$, где А – масса ядра-мишени. V_C (г) – кулоновский потенциал, принимаемый в виде потенциала равномерно

заряженной сферы с радиусом $R_C = r_0 A^{1/3}$ фм. Координата r представляет собой расстояние между центрами ядра и налетающей частицы.

Результаты анализа представлены на рисунках 3 – 4, где точки – экспериментальные данные, сплошные кривые – теоретическое описание в рамках оптической модели.

Рисунок 3 – Дифференциальные сечения упругого рассеяния ионов 4 Не с энергией 50,5 МэВ на ядре 24 Мg

ҚазҰУ хабаршы. Физика сериясы. № 4 (47). 2013

Рисунок 4 – Дифференциальные сечения упругого рассеяния ионов ³Не с энергией 60 МэВ на ядре ²⁴Мg

Параметры оптического потенциала подбирались таким образом, чтобы достичь наилучшего согласия между теоретическими расчетами, выполненными по программе SPI-GENOA [14], и экспериментальными сечениями. В качестве стартовых параметров оптического потенциала использованы их величины, приведенные в работах [15, 16]. Автоматический поиск оптимальных параметров оптического потенциала производился путем минимизации величины:

$$\chi^{2} = \sum_{i=1}^{N} \left[\frac{\sigma^{E}(\theta_{i}) - \sigma^{T}(\theta_{i})}{\Delta \sigma^{E}(\theta_{i})} \right]^{2}, \qquad (4)$$

где N – число точек; $\sigma^{E}(\theta_{i})$, $\sigma^{T}(\theta_{i})$ – экспериментальное и теоретическое дифференциальные сечения упругого рассеяния частиц под углом θ_{i} ; $\Delta \sigma^{E}(\theta_{i})$ – погрешность $\sigma^{E}(\theta_{i})$.

При выборе оптимальных параметров

оптического потенциала мы руководствовались не только величиной χ^2 , но и величиной объемного интеграла от реальной части V₀ оптического потенциала, определяемого как:

$$J_V = -\left(\frac{1}{A_P A_t}\right) \int V(r) 4\pi r^2 dr, \qquad (5)$$

где A_p и A_t – массовые числа налетающей частицы и ядра-мишени, значение которого должно быть близким соответствующей величине нуклон-нуклонного потенциала взаимодействия, равной $\approx 400 \text{ МэB} \cdot \Phi \text{M}^3$ [17].

Параметр кулоновского радиуса принимался равным $r_c = 1,3$ Фм. Полученные оптимальные параметры потенциала взаимодействия, значение объемного интеграла J_V и величины χ^2 приведены в таблице 1.

Таблица 1 – Параметры оптических потенциалов взаимодействия ионов ⁴He, ³He с ²⁴Mg

Ядро	Ионы	Е	V_0	r _o	a _o	Wv	r _V	a _v	J_V	χ^2
_		(МэВ)	(МэВ)	(Фм)	(Фм)	(МэВ)	(Фм)	(Фм)		
²⁴ Mg	⁴ He	50,5	110,7	1,24	0,792	20,39	1,57	0,634	328	16,8
²⁴ Mg	³ He	60	117,72	1,15	0,857	16,25	1,83	0,559	374	24,1

Анализ сечений неупругого рассеяния ионов ³He, ⁴He на ядрах ²⁴Mg проводился в рамках метода искаженных волн с макроскопическим формфактором коллективного возбуждения по программе DWUCK4 [18] с использованием полученных из упругого

рассеяния оптимальных параметров оптического потенциала (таблица 1).

Параметры деформации β_L ядра определялись путем нормировки расчетных сечений σ_{dwuck} к экспериментальным данным из соотношения:

$$d\sigma_{\rm L}/d\Omega = \beta_{\rm L}^2 \sigma_{\rm dwuck}.$$
(6)

Результаты теоретических расчетов для возбужденных состояний приведены на рисунках 5 – 6, где точки – экспериментальные

данные, сплошные кривые – теоретический расчет. Параметр деформации β_2 ядра ²⁴Mg в случае ⁴He составил 0,363, а в случае ³He - 0,216.

Рисунок 5 – Дифференциальные сечения неупругого рассеяния ионов ⁴He с энергией 50,5 МэВ на ядре ²⁴Mg с энергией возбуждения 1,37 МэВ

Рисунок 6 – Дифференциальные сечения неупругого рассеяния ионов ³Не с энергией 60 МэВ на ядре ²⁴Мg с энергией возбуждения 1,37 МэВ

ҚазҰУ хабаршы. Физика сериясы. № 4 (47). 2013

С использованием оптических потенциалов таблицы 1 проведен анализ экспериментальных данных методом связи каналов, где расчет выполнялся с учетом как упругого, так и неупругих каналов рассеяния с возбуждением состояний 2⁺ и 4^{+ 24}Mg в ротационном приближении (расчетный код ECIS-88 [19]). Оптимальное соответствие расчетных величин с экспериментальными данными достигалось варьированием параметров V, W и β_2 . Результаты которых представлены на рисунках 7 – 8, где символы – экспериментальные данные, сплошные кривые – теоретические расчеты. Определены параметры деформации ядер ²⁴Mg + ⁴He: $\beta_2 = 0,361$ и для ²⁴Mg + ³He: $\beta_2 = 0,341$, близкие по величине соответствующим значениям из работы [9].

Рисунок 7 – Дифференциальные сечения упругого и неупругого рассеяния ионов ⁴Не с энергией 50,5 МэВ на ядре ²⁴Мg с энергиями возбуждения для 2⁺, Q = 1,37 МэВ и для 4⁺, Q = 4,12 МэВ

Рисунок 8 – Дифференциальные сечения упругого и неупругого рассеяния ионов ³He с энергией 60 МэВ на ядре ²⁴Mg с энергиями возбуждения для 2⁺, Q = 1,37 МэВ

Работа выполнена при поддержке программы Грантового финансирования научных исследований МОН РК, грант 0605/ГФ.

Вестник КазНУ. Серия физическая. № 4 (47). 2013

References

1. Hodgson P.E. The nuclear optical model // Rep. Progress Physics. - 1971. - Vol.34. - P.765-819.

2. Burtebayev N.T., Duysebayev A.D., Ivanov G.N. Uprugoye rasseyaniye 50 MeV a-chastits na yadrakh 14N, 16O, 20Ne, 24Mg i 28Si // Izv. AN KazSSR. Ser. fiz.-mat. - 1984. - №6. - S.49-53.

3. Burtebayev N.T., Vinogradov A.A., Vongay A.D. i dr. Sistema mnogomernogo analiza dlya issledovaniya yadernykh reaktsiy na tsiklotrone IYAF AN KazSSR // Izv. AN KazSSR. Cer. fiz.-mat. - 1975. - № 2. - S.65-68.

4. Rongfang Y., Jian Y., Bingyin H., et.al. Backward angle anomaly in alpha - 24,25,26Mg scattering and 'Isotopic effect' // Chin. J.of Nucl. Phys. - 1982. - Vol.4. - P.193.

5. Lega J., Macq P.C. Angular momentum dependence in 22 MeV alpha-particle elastic scattering by light nuclei // Nucl. Phys. - 1974. - Vol.A218. - P.429-440.

6. Antropov A.E., Vasiljev S.I., Zarubin P.P., Orlov B.N. Elastic and inelastic scattering of alpha-particles through the large angles at the nuclear shell of 2s-1d // Izv. Ross. Akad. Nauk, Ser.Fiz. - 1974. - Vol.38. - P.2175-2185.

7. Gonchar V.Yu., Zheltonog K.S., Ivanov G.N., Kanashevich V.I., et.al. Features of diffraction scattering of alpha-particles on

 the ²⁴Mg and ²⁸Si nuclei // Izv. Ross. Akad. Nauk, Ser.Fiz. – 1968. – Vol.32. – P.604-607.
 8. Reed M. The excitation of unnatural-parity states in ²⁴Mg, ²⁰Ne, and ¹⁶O by inelastic alpha scattering // Thesis: Reed. – 1968. - 69-14

9. Rebel H., Schweimer G.W., Schatz G., et.al. Quadrupole and hexadecapole deformation of 2s-1d shell nuclei // Nucl. Phys. -1972. - Vol.182. - P.145.

10. Pignanelli M., Micheletti S., De Leo R., et.al. Nuclear matter density effects in monopole transitions // Phys. Rev. - 1986. -Vol.33. - P.40-49.

11. Entezami F., Basak A.K., Karban O., Lewis P.M., Roman S. Interaction of polarized ³He particles with ²⁴Mg // Nucl. Phys. -1981. - Vol.A366. - P.1-12.

12. Artemov K.P., Goldberg V.Z., Rudakov V.P., Serikov I.N. Large angle elastic scattering of ³He // Yadernaya Fizika. – 1971. - Vol.13. - P.268-276.

13. Djaloeis A., Didelez J.-P., Galonsky A., Oelert W. Elastic scattering of 130 MeV ³He // Nucl. Phys. - 1978. - Vol.A306. -P.221-228

14. Perey F.G. SPI-GENOA an optical model search code // NBI version. - 1976.

15. Nolte M., Machner H., Bojowald J. Global optical potential for α-particles with energies above 80 MeV // Phys. Rev. – 1987. - Vol.C36. - P.1312.

16. Ershov S.N., Gareev F.A., Kurmanov R.S., et.al. Do rainbows observed in light ion scattering really pin down the optical potential?// Phys. Lett. - 1989. - Vol.227. - P.315-320.

17. Devries R.M., Goldberg D.A., Watson J.W., et.al. Transition between light- and heavy- ion elastic scattering // Phys. Rev. Lett. - 1977. - Vol.39. - P.450-461.

18. Kunz P.D. Computer program DWUCK 4 // University of Colorado, Boulder, Colorado, USA (unpublished).

19. Raynal J. ECIS-88 (unpubl).