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Electron density of states and localization of two-dimensional disordered systems in quantized
magnetic fields

We study numerically non-interacting electrons moving on a two-dimensional lattice with a uniform
magnetic field and a random site potential. The electron localization and the density of states are investigated
by using the method of transfer-matrices and by the direct diagonalization technique. For numerical
simulations the Ando model with the diagonal disorder is used. The first preliminary data have been obtained
for different sizes of the system and various values of the magnetic field. The localization length exhibits
Shubnikov-de-Haas oscillations. The density of states shows several Landau bands separated by the energy
gaps. With increasing the disorder the Landau bands becomes broader and overlap with each other. The
application of the obtained results to the integer quantum Hall effect is discussed.
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Introduction

The prediction of the absence of the delocalized states for non-interacting electrons in a
disordered two-dimensional system in the limit of the vanishing magnetic field has been made in a
seminal paper of “gang of four” [1]. This has been a birth of the celebrating scaling theory in
condensed matter physics. Later on Klaus von Klitzing and coworkers have discovered a quantum
Hall effect [2]. The key point of this phenomenon is a quantization of the Hall resistance occurring
at very low temperatures close to the absolute zero and in an extremely high magnetic field. For this
discovery von Klitzing has been honored by the Nobel price for physics in 1984.

This latter event has been followed by the discovery of the fractional quantum Hall effect
(FQHE), observed experimentally by Tsui, Stormer and Gossard [3]. The FQHE has also won the
Nobel Price in 1999 jointed by a theoretician Prof. Robert Laughlin who has elaborated an
analytical explanation for the fractional version of the effect. That is why the discovery made by K.
von Kilitzing is referred to as the integer quantum Hall effect, i.e. IQHE (or ordinary QHE,
respectively). IQHE was found in two-dimensional (2D) electron or hole layers of the spatial charge
in the metal-insulator-semiconductor structures (MIS) and in the heterojunctions with modulated
doping.

The quintessence of the effect is that in the low temperature Hall conductivity o+ of the 2D
degenerated electron gas in a strong magnetic field B, which is measured as a function of magnetic
field intensity B or of the concentration of the two-dimensional carriers Ns, one can observe a
number of plateaus. This is shown in Fig. 1 as an example of the dependence of the Hall resistance
Ru on the concentration Ns. The relation Ry =1/0w is valid in the region of a plateau. Exactly on the
plateau we have

on=v e?/h. 1)

Here e and h are fundamental constants, i.e. the elementary charge and Planck’s constant,
respectively, v is filling factor which is equal to v = Ns/ Ni, with N being the number of the electron
states in the Landau level measured per square unit.

NL = 1/ 2742 = eB/ch = B/dy, 2
where c is the light speed and A=(ch/eB)” is the magnetic length and @, = ch/e is the magnetic flow

quantum. Fo the first time the observation of the quantum Hall plateaus have been observed and
measured in the Si-MOS right-angle structure at the temperature T=1.5 K [1] as a function of the
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gate voltage V. The latter is proportional to the filling factor Ns.The similar “jumping” picture has
been obtained later on the heterostuctures GaAs/Alo3Gao7As as a direct field dependence of the
Hall resistance tensor p,y at the temperature T=8 mK [4,5].
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Fig.1. - The quantum Hall effect in the GaAs heterostructure. The dependence of the tensor of the Hall
resistance: the transversal pxy (on the top) and the longitudinal px« (0n the bottom) on the strength of the
external magnetic field B. The temperature is equal to T=8 mK [5]

Model of the numerical simulations

The study of electronic states in disordered systems is inevitable to understand electronic
transport properties in conducting materials. Most directly the electronic states are described by
their wave functions. Since the wave functions and the energies are both obtained by solving the
eigenvalue problem for the disordered Hamiltonian, it is quite natural to expect that the energy
spectrum involves some information on the eigenfunctions. In disordered systems the spatial
symmetries which exist in pure systems are completely lifted. The fundamental symmetries under
the operation of the time reversal can persist. The importance of them in the problem of the
Anderson localization were first pointed out by Wegner [6,7] in the treatment of weakly localized
regime. The link between the level statistics and the fundamental symmetry was originally proposed
in nuclear physics in order to explain complicated energy spectra in some heavy nuclei [8-11], and
then it has been applied to the problems of metallic fine particles [12, 13] and quantum chaos
[14,15].

Although substantial progress in the understanding of critical behaviour at the disorder-
induced IQHE-to-insulator transition has been achieved, nevertheless several issues are still
considered as being open and unsolved. The first issue of them is knowledge of the density of
states. The second one is the electron localization in the centre of the Landau bands. We use the
famous Ando model with the diagonal disorder [16]

H=Y e |r><r|+ )t \Jr><r+A ©)
r A

The onsite energies are measured in units of the hopping integral t. .+, while the length
scale is measured in the units of the lattice constant, i.e. a=1. The electron states denoted by |r>
correspond to the lattice sites of the simple square lattice. The random energies €; are governed by
the following distribution law
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w M<W /2
P(e)= ' ' 4
) { 0, M>W /2. )

The hopping elements between neighboring states r and r+A are considered and have the
following form [17,18]:

~ {exp(T,Zﬂi az), = {i e, } G

L Ae{ie +ez}

eB
where the magnetic field B enters the problem through the factor ¢ = N = e for simplicity we

choose the standard gauge, namely A=(0,-B,,0).

The density of states

We study the single-electron density of states of two-dimensional disordered systems in the
presence of quantized magnetic field under various conditions. According to the definition of the
density of states

AL ©

Here p(E) is a global quantity, which is averaged of the whole surface of the two-dimensional
electron gas. The discrete energies have been calculated by the straightforward diagonalisation of
the Ando Hamiltonian (3). Figures 1 and 2 demonstrate the spectral density of states p(E) at various
disorder W of the random potential for the 2D system of linear size L=50 with fixed magnetic filed
a=0.1 and a=0.01, respectively. The plots exhibit periodic behaviour, which is typical for the
discrete lattice model. In both figures one observes the oscillating behaviour of the density of states.
Close to the band edge the Landau bands are well separated by the energy gaps. With increasing the
disorder W the Landau bands start to overlap with each other, their heights diminish. Finally, for
larger W the gaps disappear entirely. Although the shapes of the density of states in Figure 1 and in
the inset of Figure 2 are similar to each other, nevertheless p(E) can not be mapped by a scaling
transformation f(a,W).
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Fig.2. Density of states p(E) of two-dimensional electron gas in a quantized magnetic field of the magnitude
0=0.1 for various disorder degree W: 1 —0.7; 2 -2.0; 3-3.0; 4 - 5.0. The size of the square sampleis L x L
=50 x 50. The results are obtained after ensemble averaging over 200 realizations. The density of states of
the tight-binding model (W=0) is also shown by a non-oscillating line
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Fig.3. Density of states p(E) of two-dimensional electron gas in a quantized magnetic field of the magnitude
0=0.01 for various disorder degree W: 1 -0.7; 2-1.0; 3—1.5; 4 - 2.0; 5-5.0. The size of the square sample
is L x L =50 x 50. The results are obtained after ensemble averaging over 200 realizations. The density of
states of the tight-binding model (W=0) is also shown by a non-oscillating line. The inset shows the enlarged
area of the density of states marked by the red circle

The localization length

The proposed numerical technique for calculation of the localization of the electronic states is
based on the evaluating the Green's functions ge(L) within the single particle approximation. Here
the electron transport occurs with energy E in a bar-shaped disordered system of a length L and of a
finite width M. Our system should be in a thermodynamic equilibrium. For that it is connected to
the two semi-infinite perfect leads (thermal baths).

The localization length 4 can be obtained in the quasi-1D limit of a long 2D stripe with the
length L>>1, using the Oseledec's theorem. Then one has the following definition:

AW, ,E) o= L

Thus, the inverse localization length is simply the exponential decay rate of the spatial
extension of ge(L). In practice, the study of the Green's functions is mapped into the equivalent
transfer-matrix calculations. The latter yields the smallest positive Lyapunov exponent identified as
AL, Due to the convergence process of the underlying iteration procedure in the limit of large L, the
statistical quantity 4 becomes self-averaging [19]. We use the transfer-matrix method developed in
the paper [18], which has been successfully applied for three-dimensional disordered systems
subject under high magnetic fields. In contrast to the method of calculation of the density of states
performed in the previous section, which is based on the eigenvalue solvers, here we apply the
scattering approach for computing the transport of the electron waves through the disordered region.
While the quest for the eigenvalues requires the square geometry of the system (i.e. finite in both
directions), the transfer matrix method operates on a single spatial scale, namely on the width L of
the quasi-one-dimensional stripe, whose length tends to infinity. This approach provides more
convenient conditions for the thermodynamic limit, rather than direct diagonalisation technique.
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Fig.4. Renormalized localization length A as a function of a magnetic field a at the disorder degree W = 2 for
various energy E = 0; -0.2; 2.0. Data correspond to the energy E = 0 for size L x L = 8 x 8 of a two-
dimensional disordered system
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Fig.5. Renormalized localization length A as a function of the electron energy E in a fixed magnetic field
a=0.001 in the vicinity of the lowest Landau level at the disorder degree W = 0.7 for various system size L :
1-10,2-20,3-50,4-100,5 - 200

All the data for the reduced localization length 4 obtained by the transfer-matrix-method have
accuracy between 0.1% and 0.3% for the size L ranging from 20 up to 200. Further increase of the
system size above L = 400 requires an improvement of the statistical accuracy of the raw data. In
fact, the computing time increases as L%/e?, where & = k 84./4, is the relative statistical accuracy.
The coefficient of proportionality k depends on the type of the boundary conditions and on
computing details (that are the efficiency of the computer and the optimization of the algorithm).

In this paper we have proposed the numerical method for the calculation of the density of
states and the localization length. The first raw results have been obtained for different sizes and the
magnetic field. Although the preliminary data are given without detailed analysis and physical
discussion, these will be provided elsewhere. Concerning the level statistics we show that the
compressability of the electron spectrum is connected to the multifractal properties of the wave
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functions [20]. We shift these and other relations to the problem of the quantum Hall effect for the
nearest future.
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N.X. KopekemeB

KBaHTTijIeTiH MAarHuT epicTepaeri 3JeKTPOHIBIK KYWIePiHiH ThIFbI3AbIFbI )KOHE eKioJImeM/Ii
peTrTe/iMereH KyieJepiHiH JJOKATU3AUACHI
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bi3 OiprekTi MarHuT epici 6ap koHE Ke3AeHCOK TYHiIHI MOTeHIIabl 0ap eKieNeMal Topaa Ko3FanaThiH Oip
OipiMeH ocep eTHEHTIH 3JeKTPOHAAPABI 3epPTTEHMI3. DIEKTPOHIBIK JIOKAIW3AIMACH XOHE KYWIepiHiH
TBIFBI3ABIFEl Tpachep-MaTpula XoHe AWaroHANM3anus SficiMeH 3eprreneni. KoMmbroTepsik Monmenbaey
VIIiH AMaroHaNIbIK peTTeIMereH AHI0 MOACII MalaTaHblIAbl. 3epTTEININ OThIPFaH KyYlHe MEH MarHuT epici
[IAMACBIHBIH JPTYPI eJIIeMAepi YIIIiH aJFaliKbl ajlIbIH ana MOJiMeTTep alblHAbL. JIoKanu3anus Y3bIHIbIFbI
[Iy6HMKOB-1e-T"a3 OCHMILIAIUSUIAPBIH aHKBIHIANTBIHIBIFBI TAOBUIIBI. DIECKTPOHBIK KYHIEPIH THIFBI3IBIFbI
JHEpPreTHKANBIK CaHpUIaynapMeH OemiareH JlanmaynerH OipHemie 3o0HamapeiH — Kepceremi. Kocma
MOTEHIMANIBIH PETTeNMeyi ockeH caiiblH Jlanaay 30HaIapbIHBIH €Hi YIIKeie Tycei )koHe onap e3apa Kaiita
xabbuta Oacraiinbl. Kom KeTKi3iareH KOPTHIHABUIAPABIH XOJUIABIH TOJIBIKECENTI KBAHTTHIK A (deKTicine
naiananyra OONATHIHIBIFB TATKbIIAHFAH.

Tyitin co30ep: >NEKTPOHIBIK OTKI3TIMITIK, KPUTUKAIBIK KYOBLIBIC, €Ki eNIIeMIeri eKTPOHIBIK Ias3,
XomabH KBAHTTHIK 3P HEKTICI, SMEKTPOHBIK JIOKATH3AIHACHI.

N.X. Kapekeies

ILnoTHOCTDH IJICEKTPOHHBIX COCTOSITHUM M JIOKAJIHU3ALUA ABYMEPHBIX HEYITOPAAOYECHHBIX CUCTEM
B KBAHTYIOIIUX MATHUTHBIX MOJAX

MbI HcciienyeM HEB3aMMOICHCTBYIOIIME AJICKTPOHBI, JBWKYIIAECS B JBYMEPHOW pEIIETKE ¢
OAHOPOAHBIM MArHUTHBIM IIOJIEM H CHy‘IaﬁHBIM Y3CJIbHBIM NOTCHIIUAJIOM. H3y‘IaIOTC$I QJICKTPOHHAA
JIOKAJIH3alKs M TUIOTHOCTh COCTOSHHM METOMOM Tpachep-MaTpUIl U METOAOM MPSIMOW JHArOHATH3AIIHHH.
JIsl KOMIIBIOTEPHOTO MOJEIMPOBAHUS HCIOJIb30BaIach MOJAETb AHIO C JAMATOHAIBHBIM OCCIIOPSIIKOM.
IepBbic mpenBapUTEIbHBIC AAHHBIC MOJYYECHBI JUIS Pa3HbIX Pa3MEpOB HCCIIECAYEMOW CHCTEMBI U BEIHYUH
MAarHUTHOTO TmoJisA. Halifeno, 9TO AJMHA JIOKAIM3AIMKM MposBisgeT ociwuisaiun [lyonukosa-me-Iasa.
IImoTHOCTH SJICKTPOHHBIX COCTOSIHHM ITOKa3bIBAa€T HECKOJIBKO 30H HaHI[ay, PasaACIICHHBIX SHECPI€TUUCCKUMHA
mensimu. C yBenuueHneM Oecropsika MPUMECHOT0 MOTEHITAA HPHHA 30H JlaHaay CTaHOBUTCS OOJbIIIE,
W OHHM HaYMHAIOT MIEPEKPHIBATHCS MEXKIY coboil. OOCykaaeTcs MPUMEHUMOCTD MOJTyYeHHBIX PEe3YJIbTaTOB K
LIEOYMCIICHHOMY KBaHTOBOMY 3 dekTy Xouia.

Kniouesvie cnoea: >nexTpoHHas MPOBOJUMOCTb, KPUTHUYECKUE SIBJIICHHS, BYMEPHBIH 3JICKTPOHHBIN
ras, KBaHTOBBIN 3¢ dekT X0IIa, SIEKTPOHHAS JIOKATH3AIHS



