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Fluctuations of electron energy levels in the interger quantum hall effect

The level statistics in the regime of the quantum Hall effect is studied. The critical exponent of the
localization length is found by analyzing the lowest Landau band. By scaling procedure for different system
sizes we find the spectral compressability at the plateau-plateau transition. It turned out to be scale-invariant.
Obtained results are generalized for other special dimensionalities. Our findings are characteristic of the
critical unitary class of universality. For two-dimensional systems the tail of the level spacing distribution
resembles the Poisson distribution. It is similar to that of three-dimensional systems, although the
exponential rate is as twice as large. Fluctuations of the energy levels are distinct from the classical Gaussian
unitary ensemble data and reflect the multifractal nature of the electron wave functions.
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Introduction

It is known that the fundamental symmetries under the time reversal operations pertain in
disordered systems, while spatial geometrical symmetries, which can exist in crystalline systems,
are completely lost. These level statistics are studied in the frame of the random matrix theory [1],
where the energy levels are represented by the eigenvalues of model Hamiltonian matrices whose
elements are randomly distributed. Within the random matrix theory the level statistics have
universal properties depending only on the fundamental symmetry of the system. If the system is
invariant with respect to time reversion, there are two universality classes - orthogonal and
symplectic ones. The former is realized, when there is no spin-orbit interaction (i.e. the spin of the
particle is integer), the latter applies, when the spin of the particle is half odd integer and there
exists a spin-orbit interaction. When the time reversal symmetry is broken (e.g. by the presence of
magnetic impurities or an external magnetic field) the corresponding universality class becomes of
unitary type.

It is usually believed that the level statistics of extended states are well described by the
random matrix theory on the basis of the Gaussian ensembles [2]. The strong level repulsion is
characteristic of the level statistics in the delocalized (or metallic) regime. This can be expressed by
the linear behavior of the level number variance (dN2(E))= k(N(E)) and by the power-law behavior
s# of the level spacing distribution function P(s) in the small-s spacing region.

It is well-known that the level repulsion parameter g takes on the values 1, 2 and 4 for the
Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and the Gaussian
symplectic ensemble (GSE), respectively [3]. This fact represents that the level correlation in the
delocalized regime is quite strong. That means, the probability to find two levels in an
infinitesimally small distance from each other is vanishing, i.e. P(s) = 0.

On the other hand, the electron energy levels in the localized regime are completely
uncorrelated. This is due to negligible spatial overlapping between wave functions of corresponding
localized electron states. In this case the level statistics become Poisson-like and the level number
variance is exactly equal to the average level number within the fixed energy interval (dN2(E))=
(N(E)) [4]. From these two limiting behaviors of the level statistics it is clear that the properties of
the localization-delocalization transition in disordered systems can be analyzed in terms of the level
statistics.

Shklovskii and co-workers [5] have analyzed the level spacing distribution in three-
dimensional Anderson model by changing the system size and the strength of disorder. They have
found that the level spacing distribution function satisfies a certain scaling property. From the
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scaling properties one can extract the critical exponent of the localization length at the metal-
insulator transition. Their computed value of the critical exponent is consistent with other
investigations [6,7]. In this paper the level statistics in the regime of the quantum Hall Effect
(QHE) is studied, in terms of the level number variance and the level spacing distribution.

Critical level number variance in QHE

Before starting to analyze the statistical properties of the spectra close to the center of the
Landau bands, one should construct the form of the density of states with the goal to find the critical
energies. It is known that points of the plateau-plateau transitions for the transverse conductivity oxy
in the integer quantum Hall Effect coincide with zeros of the longitudinal conductivity oxx [8]. This
IS a prerequisite of the maxima for the corresponding values of the density of electron states p(E). In
fact, in the theoretical lattice representation the energies where the density of states has extremities
do not necessarily fall on the critical points of the QHE-insulator transition. This is because the
density of states, as a first mathematical moment, is not sensitive to the critical features of the
transition.

This is the higher order cumulants (e.g. variance as a second moment of the density of states,)
that are responsible for signalizing the criticality. The values of energies in the electron spectrum
where the transition occurs are called the critical energies Ec. At these critical energies the statistical
properties of the electron spectrum are such that the variance of the number of energy levels in a
given energy interval E exhibit finite-size scaling behavior.

Exactly at the critical energy Ec where the QHE-to-insulator transition occurs in the lowest
subband I have found the linear behavior of the level number variance:

(ON2(E))=koHe (N(E)) , with kone= 0.13+0.01. 1)

The results of the extensive numerical simulations are shown on Figure 1. Different sizes of the
two-dimensional system have been modeled in order to confirm the scaling ideas ranging from
L=50 up to L=400.

On the one hand, this proportionality law Eq. (1) is quite similar to the critical three-
dimensional case with k=~0.27. On the other hand, the linearity resembles the insulating limit with
k=1, i.e. Poisson law of uncorrelated variables. All these cases are depicted in the Figure 1. It is
seen that in the log-log scale the asymptotic energy-large behavior has the slope equaling unity.
Other limiting cases of the GUE and the Poisson are shown as well. Since all points lie on the same
curve, we can conclude that the spectral fluctuations in the critical region do not depend on the size
of the system. This scale-invariance is signature of the universality of the critical unitary statistics.

For the short range correlations the number variance follows the random matrix approach,
however with another prefactor distinct from the Wigner formula for Pcue(s) [9]. This can be seen
in the inset of Figure 1. The linear slope corresponds to (dN2(E))= kone (N(E)) with k=0.15. This
value is pretty close to the one obtained earlier according to Eq. (1). The crossover from the GUE
limit valid for short-range correlations to the critical one corresponding to the long range
correlations does not depend on the size of the system and lies in the range of the mean level
number between (N(E))=1 and (N(E))=10. The weak localization corrections to the Gaussian
Unitary Ensemble are evaluated in the work [10].
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Fig.1. Level-number variance (oN2(E)) as a function of the average number of electron levels (N(E)) in an
energy interval of a given width E at the critical critical energy E.=-3.455 of a two-dimensional system under
strong magnetic field of the magnitude «=0.1 for different linear size L, shown by various colors (the unitary

case f=2). The error-bars equal the sizes of the symbols. Violet and green lines: the GUE result and the
Poisson law, respectively. Blue straight line: asymptotical critical number variance. Inset: the same
dependence in linear scale for the system size L=100. Dark-blue straight line corresponds to the critical level
number variance for the three-dimensional case

The values for the critical number, by other words the variance-over-mean which is equal to
the critical prefactor k are very important entities for the scaling hypothesis and for the computation
of the critical parameters like the multifractality dimensions and the critical exponent of the
localization length [11] are collected in the tables of my papers [9,12] together with other cases of
the Anderson-type transitions. It is clear that the linear law for level number variance is tightly
connected to the two-point correlation function, which has been computed elsewhere [13].

Relation to the multifractality of the electron wave functions

In the paper of Chalker et al [14] it has been proposed that the properties of the wave
functions are related to the level statistics. Especially for anomalous diffusion found in the critical
this relation connects the moments of the amplitude of the electron eigenstates to the level number
variance in the following way:

k = (d-D2) /2d, 3)

where d is the spatial dimensionality and D is the second moment of the spectrum of multifractality
(the fractal dimension of the second order).

For the quantum Hall systems these quantities have intensely studied and are well known. By
a precise computation of the level statistics one can test the proposed theory. Unfortunately, at
present no reliable analytical theory exists for the tail of the level spacing distribution that will be
discussed in the next section. The interesting value is the first derivative of the level number
variance with respect to energy. Since we believe in the above-mentioned linearity, for simplicity,
we choose the ratio (oN2(E))/(N(E)) “variance-over-mean”. It should saturate to the derivative in
the limit of large <N> and provide us with the precise value of the prefactor koHe.

To estimate the asymptotic, on the one hand, it is required to use an energy interval that
comprises as many eigenvalues as possible. On the other hand, the critical region should be kept as
narrow as possible to avoid undesirable mixing of the localized states. For that, of course, one needs
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to diagonalize Hamiltonian matrices of huge size. Therefore we computed a small part of the
spectrum of the two-dimensional square lattice of linear size L=400. By trying to increase the
number of the eigenvalues, one is tempted to broaden the width of the energy interval around the
critical energy E.=-3.455. The latter procedure unavoidable leads to the accuracy looses (error-bars
grows) for the critical statistics because then the energy dependence of the level statistics comes
into play.

We have found reasonable values for the energy width and demonstrate the results in the
Figure 1. The numerical results for the level number variance (dN2(E)) suffers strongly from the
fact that one can use only a finite number of energy levels, up to <N>=400-500 as a maximum. This
causes auxiliary correlations that could affect and falsify the final result for large energies [15]. One
can extend the range of N which produces reliable results by studying the quantity (oN2(N*)), where

N*=(N)(L-(N)/No)

is the reduced mean number of the electron levels with No being the total number of levels in the
system.

The energy interval which we determined to be the largest one still showing the critical
fluctuations contains approximately 440 levels. Due to the difficulties discussed above one expects
only the data up to N=140 to be reliable. However at this value the variance-over-mean does not
saturate to its limiting value. So the best one can provide is an upper bound for the prefactor, which
is roughly 0.13. But this value is not sufficient to distinguish between two predictions k =0.15 (of
above made estimations) and k= (d-D. )/2d=0.09 [16]. To improve the accuracy and to proceed
further one needs a number of level at least more than 1000-3000 levels only in the critical region,
which would correspond to a unprecedented scale — to a matrix size of about 2000x2000 [17],
which is at present not achievable with nowadays computer facilities and power.

The level spacing distribution in the quantum Hall effect

In contrast to the level number variance, which can be expressed as an integral of the two-
level correlation function, the level spacing distribution P(s) possess all of the orders of the
correlations including both the two-point correlations and the higher terms. Therefore the long-
range behaviour should be different from the one for the level number variance. The long range
correlations correspond to the asymptotic limit of large energies. In the case of the distribution of
the distances between the nearest-neighbouring energy levels, i.e. P(s) we deal with large range of
spacings s. That is why it is imperative to carry out the computer simulations for P(s) for the
asymptotically s-large region, which is quite challengeable task [18]. In the Figure 2 we show the
results of our calculations for the critical level spacing distribution in the regime of the Quantum
Hall effect.

One can observe the linear behaviour for the logarithm of Pore(s), which is quite similar to
the linear slope for 3D Anderson-type metal-insulator transition (shown by the blue line). All
computed values (various symbols in the Figure 2) are lying on the same curve that means a size-
independence of the level spacing distribution. In the statistical-physical sense this is a
demonstration of the criticality.

As for the other critical ensembles [9,19] we have to perform a fitting procedure for the tail of
P(s). For the Quantum Hall Effect-to-insulator transition we have the following law:

Pore(s) = exp (- v s), with y=4.2 (2

Apparently this law deviates from the Wigner surmise (shown by red line in the Figure 2). However
for small spacings s (or energies) it shows a quadratic behavior as expected for unitary symmetry.
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For large spacings s the value of a is quite close to the one found for two-dimensional systems with
symplectic symmetry (i.e. with the strong spin-orbit coupling) [20].

In investigating the three-dimensional Anderson model of localization [21] it has been
suggested in our previous paper s[15,22] that the exponential decay rate v is related to the variance-
over-mean coefficient via the formula y=1/2k. Comparing the equation (1) and (2) one can confirm
this relation also for the Quantum Hall effect, although the discrepancy a bit larger.
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Fig.2. Distribution function of the inter-level distances P(s) in the vicinity of the critical energy Quantum
Hall-to-insulator transition in the lowest Landau band for various sizes of the two-dimensional system L=50,
80, 100, 200 (shown by symbols of different type). Only asymptotic region of P(s) for large s is plotted. The

Poisson law is depicted by green straight line. The Wigner surmise for GUE is depicted by red. Blue line

corresponds to the asymptotic behavior of the critical orthogonal P(s) for a three-dimensional system

Summary

In conclusion, we were able to show the existence of a critical level statistics in the quantum
Hall system, at least for the lowest Landau band. The spectral fluctuations in the critical region do
not depend on the size of the system and therefore universal. They are distinct from the classical
canonical GUE data and reflect the multifractal nature of the eigenstates. In the future we plan to
extract the critical exponent of the localization length in the QHE regime using the scaling finite-
size properties of the level statistics. The level spacing distribution has the simple exponential sub-
poissonian decay analogous to the typical Anderson-transition problems. However it should be
noticed here that, although substantial progress in the understanding of critical properties in the
transition from insulator to the quantum Hall effect has been achieved, nevertheless many issues of
the Anderson-type of the metal-insulator transition [23-26] are still considered as being open and
unsolved.
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N.X. Kopekemen
ByTrincanabIK KBAaHTTBIK X071 3 deKkTicinaeri 3J1eKTPOHABIK AeHreijiepain GpayKTyanuscol

XoJnAblH KBaHTTHIK J(QQEKTICIHAETi SHEpPrus JIEHIreWepiHiH CTaTUCTHKAChl KapacThIPhUIFaH.
JlaHnaybIH TOMEHTI 30HACHIHBIH aHANN31 OOMBIHINA JIOKATM3AINS Y3bIHIBIFBIHBIH KPUTHKAIBIK SKCIIOHEHTI
TaObUTAEl. CKEHWIMHT OIICIMEH OTKeNmeri KeJJeHEeH KEIETIiCIHIH YCTIPT apaiblK  CHEKTPAIBIK
Koppensinusiiay (QYHKIUSICBIH —3C€PTTEITCH. AJIBIHFAaH HOTIKeNep Oackaga enmieM  OipiikTepiMeH
knHakTanrad. OHBIH KeH KeJeMIi-WHBapHAHTTH ekeHi Oenrimi Oommpl. Kom KEeTKi3UIreH HOTIKEIep
KPUTHKAJIBIK YHUTAPIBIK KIACC KAHKAKTBUIBIFBI VIINIH ©31HE TOH epEKIICTIKTePMEH CHIIATTATaIbl.
Exienmmemaik okyHdenep YVIIIH acHUMIOTOTHKalblK KeMy IlyaccoHHbIH ynecrtipinmyine ykcaiinel. O,
AKCITOHCHIIMANJIBIK KOPCETKIIII €Ki ece JKOFaphl 0oJjica Jia, YIIeImeMIl KyHeaepiH KeMyiHe YKcac Kelei.
DHeprus NeHrenaepini GpIyKTyarusuiapbl KIacCUKambIK ['aycCOBTIK YHUTApIIBIK aHCAMOII MoiMeTTepiHeH
epekuiencHeni. Onap 3JIEKTPOHHBIH TONKBIHAB (YHKIUSCHIHBIH MYJIbTH()PAKTAIIBIK TAOUFATBIH 9CEpIICH/Ii.

Tyitin ce30ep: >NEKTPOHIBIK OTKI3TILITIK, KPUTUKAIBIK KYOBUIBICTAp, €Ki OJIIEMJIEri 3IEKTPOHIIBIK
ra3, XOJUIABIH KBAaHTTHIK 3(PQEKTici, KpUTHKAIBIK UHAEKC, JEHTeIep CTATHCTUKACKHI, YHUTAPIIBIK aHCAMOIT.

N.X. KapekeueB

DyKTyaunu 3JIeKTPOHHBIX YPOBHEH 3HEPIU B LEJI0YHCICHHOM KBAaHTOBOM 3 dexTe Xosnia

Wzydaercst cratrcTka ypoBHEH 3Hepruu B kBaHTOBOM d(dekre Xomta. [lo aHanmm3y HIDKHEH 30HBI
Jlanpay HaiieHa KpUTHUECKasi SKCIIOHEHTA JJIMHBI JIOKAIM3auui. MeTo1oM CKeHIMHra KOHEYHOTO pa3Mepa
MBI HUCCIICAYEM CHEKTPAJIbHYIO CHKHUMACMOCTb Ha IEpPEeXoA€ MEXKAY pas3/IMYHBIMU IJIATO IMONCPEHYHOTO
compotuBieHus. Oxazajaoch, YTO OHa SBIsSIETCd MaclITabHO-WHBapHaHTHOM. I[lomyuyeHHble MaHHBIE
000011IeHbl Ha IpyTrue NpOCTPAaHCTBEHHBIE pa3MepHOCTH. Hamm pe3ynbraTsl XapakTepHbI U1l KpUTHIECKOTO
YHUTApHOI'O KJIacca YHHMBEPCAIBHOCTU. JUIsl JBYMEPHBIX CHCTEM ACHMIITOTMYECKHHM CIaJ IIOX0X Ha
pacnpenenenue Ilyaccoma. OH aHanoOrMueH cHagy TPEXMEPHBIX CHCTEM, XOTS OKCIMOHEHIWAIbHBIN
MoKasarenb B ABa pa3a 0ojpiie. QIyKTyalluu YpoBHEH SHEPTUH OTINYAIOTCS OT JaHHBIX IS KJIACCUYECKOTO
I'ayccoBoro ynurapHoro ancam6is. OHM OTpakaroT MYJIBTH (DpPaKTalbHYIO MPUPOAY BOJHOBOH (hyHKIMHU
JIEKTPOHA.

Kntouegvle cnoea: >neKTpoHHAs MPOBOJUMOCTh, KPUTUYECKHE SIBICHUS, IBYMEPHBIH 3IEKTPOHHBIH
ra3, KBaHTOBbIH 3 ekt Xonna, KpUTHIECKUH HHAEKC, CTATUCTUKA YPOBHEH, YHUTApHBINA aHCaMOJIb.



