IRSTI 50.07.07

Medetov B.", Koishigarin A., Yskak A., Niazaliev K., Naurzbayeva A.

IETP, Al-Farabi Kazakh National University,
Almaty, Kazakhstan “e-mail: bm02@mail.ru

A COMPARATIVE ANALYSIS OF OPENMP AND
CUDA PERFORMANCE AS EXEMPLIFIED
BY THE COMPUTATION OF FOURIER TRANSFORM

A comparative analysis of the performance of the two technologies of parallel computing, OpenMP
and nVidia CUDA have been carried out as exemplified by the computation of Fourier transform. It was
obtained that the execution time for the Fourier transform on multi-core central processor depends on
the number of cores nonlinearly. In addition, the form of this dependence changes because of the number
of threads: for the threads whose number is lower than that of hard cores the dependence is powerlike
whereas for the threads whose number is higher than the hard cores number the dependence is
exponential. The maximum efficiency of computation with the use of OpenMP can be achieved when
the number of threads used in the program is twice the number of hard cores. The comparison conducted
for this case showed that for a small number of frames OpenMP is more efficient in terms of execution
time, otherwise, CUDA offers an advantage.

Key words: parallel computing, Fourier transform, NVIDIA CUDA, OpenMP, digital processing.

Meaetos b.°, Koiwmrapux A., blckak, 9., Huasaamnes K., Haypbizbaesa A.

ITDOF3M, Oa-Dapabu at. Kasak, yATTbIK, YHUBEPCUTETI,
AAmarbl k., Kasakcran “e-mail: bm02@mail.ru

Dypbe TypAeHAipYiH ecenTey MbicaAbiHaa OpenMP meH
CUDA eHiMAjiAIKTepiH caAbICTbIpMaAbl TaAAay

JKyMbICTa KeH TapaFaH eki MapaAAeAb ecenTey TeXHOAOIMSIAAPbIHbIH CreKTPaAbAbl TaAAdyFa
HEri3AEATE€H CaAbICTbIPMaAbl 3epTTeyi XKyprisiaai. Toxipnbeaik SAiCneH eki TeXHOAOrMSHbIH Aa
ecentey 6HIMAIAIr GaranaHAbl. 3epTTey 6apbiCbiHAQ, KOMSAPOAbl OpTaAblk, npoueccopae Dypbe
TYPAEHAIPYiHiH OPbIHAAAY YaKbITbIHbIH IAPOAAP CaHbIHA TOYEAAIAIr GEMCbI3bIK, 3aHFa OaFbiHATbIHABIFbI
aHblkTaAAbl. OcblFaH KOCa, aTaAfaH TOYEAAIAIKTIH (hopmachbl aFbIHAAPAbIH, CaHblHa GaiAaHbICTbI
e3repeAi: arbiIHAAP CaHbl MPOLECCOPAbIH (PU3MKAABIK, SAPOAAP CaHbIH a3 6OACA TOYEAAIAIK ADPEXEAIK
Typre ne 60OACa, aFblHAAQP CaHbl MPOLECCOPAbIH (DU3MKAABIK, SAPOAAP CaHbIHAH Kern 60ACa, TOYEAAIAIK
3KCMOHEHUMaAAbI 60Aaabl. OpenMP TEXHOAOTUSCbIH KOAAAHY apKbIAbl €H YAKEH OHIMAIAIKTI aFbiHAap
CaHbl NMPOLECCOPAbIH (PM3MKAABIK, IAPOAAP CaHbIHaH €Ki ece apTblK, O0AFaHAQ KOA >KeTKi3yre 6OAaAbl.
PKyMbICTafbl CaAbICTbIPY HBTMXKECiHAE DpernMAEpAiH a3 caHbiHAQ OpenMP TexXHOAOrMSChI TUIMAIpeK
6oAca, dpenmaep caHbl eckeH caibii CUDA TEeXHOAOrMSCbIHbIH TarcCblpMaHbl OPbIHAAY YaKbITbl
asblpak, 60AADI.

Ty#in ce3aep: napaarens ecentey, Mypbe TypaeHaipyi, NVIDIA CUDA, OpenMP, umdpabl
eHAgY.

Meaetos b.", Konwumrapux A., blckak A., Huasaames K., Haypbiz6aesa A.

HUMITD, Kazaxckmi HaLMOHAAbHbIN YHUBEPCUTET nM. aab-Dapabu,
r. AAMatbl, Kasaxcran “e-mail: bm02@mail.ru

CpaBHMTEAbHbIM aHaAM3 NPoU3BoAUTEAbHOCTM OpenMP u
CUDA Ha npumepe BbluncaeHusi Dypbe npeobpazoBaHus

CpaBHUTEAbHDBI aHAAU3 MPOM3BOAUTEABHOCTU ABYX TEXHOAOTMIM MAPAAAEAbHbIX BbIUMCAEHUA —
OpenMP 1 nVidia CUDA — 6bIA NpoBeAeH Ha NpuMepe BbluMCAeHUs npeobpasoBaHus Dypbe. bbiro
MOAYUYEHO, UTO BpeMsl BbINMOAHeHUs npeobpasoBaHus @Dypbe Ha MHOMOSAEPHOM LIEHTPAAbHOM

©2017 Al-Farabi Kazakh National University

Medetov B. et al.

NnpoLeccope 3aBUCUT OT KOAMYECTBA sAep HeauHerHo. Kpome Toro, ¢opma 3TOM 3aBMCMMOCTMU
U3MEHSIETCS M3-32 KOAMYECTBA MOTOKOB: AASl MOTOKOB, YMCAO KOTOPbIX MEHbLUE, YeM KOAMYECTBa
h13nyecknx sAep, 3aBMCMMOCTb SIBASIETCSl CTEMeHHOM, TOrAa Kak AASl MOTOKOB, UMCAO KOTOPbIX
GOAblLIE, YeM KOAMYECTBO (DU3MUECKMX SIAEP, 3aBUCUMOCTb SIBASIETCS 3KCMOHEHLIMAAbHOM.
MaxkcnmanbHas 3HEeKTUBHOCTb BbIUMCAEHUIA C UCMoAb30BaHuem OpenMP MoeT 6bITb AOCTUIHYTA,
KOr A2 KOAUYECTBO MOTOKOB, MCMOAb3YEMbIX B MPOrPamMmMe, B ABa pasa 60AbLLIE KOAMYECTBO (PU3NYUECKMX
sAep. AaHHOEe CpaBHEHME MOKa3aA0, YTO B YCAOBUSIX NMPOBEAEHHbIX IKCMEPUMEHTOB AASI HEOOABLLIOIO
KOAMYECTBa (DPeriMOB HAaMOOABLLMIA BbIMIPbIW MO BpemeHn AaeT OpenMP, a B MpoTMBHOM CAyuae

NpeBOCXOACTBO MoAyyaeT yxxe CUDA.

KaroueBble caoBa: napaAA€AbHOE BbIYMCAEHUE, npeo6pasoBaHme (Dypbe,

OpenMP, undpoBsas obpaboTka.

Introduction

With advancement of science and technology
the researchers encounter increasingly complex
problems which require an enormous number of
computations to be solved. At present the best
available solution to provide the required
computation capacity is parallel computing. There
are several options, the most common of them being
OpenMP for parallel computing on a multi-core
central processor and nVidia CUDA on the basis of
a graphic processor. With such diversity the
question is which technology is the most appropriate
for solving a specific problem? This issue has been
discussed and studied quite a while.

Thus, a comparison [1] was made of the open
parallel computing systems on different hardware
platforms. In another study [2] parallel computing
was applied to the neural network modelling and
performance comparison of central and graphic
processors made. In the work [3] OpenACC,
OpenMP and CUDA technologies are compared for
the computation of various tasks such as matrix
multiplication, Mandelbrot set calculation etc. A
comparison of three parallel computing
technologies OpenMP, nVidia CUDA and StarPU
was made by the example of matrix multiplication
[4]. In the research [5] an experiment was conducted
to evaluate a cluster of two graphic processors.
Calculations were performed using a ‘“hybrid”
method: two technologies of parallel computing
were used simultaneously.

In our research we investigated certain problems
of parallel audio signal processing. Our primary
focus was on comparative analysis of OpenMP and
CUDA performance in the computation of Fourier
transform.

The complete audio signal processing cycle
consists usually of the following main phases:

1. Data preparation

2. Parameter computation (vectorization);

3. Codebook compilation

ISSN 1563-0315

NVIDIA CUDA,

At the first phase of audio signal processing
silence and very noisy lengths are removed, the
signal is segmented into quasi-stationary lengths and
S0 on.

At the second phase certain parameters of an
audio signal are calculated, e. g. base frequency,
cepstral coefficients, formants and others. Many of
these parameters are identified with the help of the
fast Fourier transform (FFT). At the last phase, i. e.
during codebook compilation, such methods as
Gaussian mixtures, hidden Markov models and
others are often used [6].

To assess the execution time for each phase we
used a program which performs all three phases of
the audio signal processing. It was found that
Fourier transform at the second phase takes 70-75%
of the total execution time. Therefore, a faster signal
spectrum computation could significantly accelerate
audio signal processing as a whole. Thereby, it is
possible to shorten the processing time of phone
calls and other audio signals in telecommunication
centers, call-centers in various organizations etc.
Therefore, a faster signal spectrum computation is
quite a topical problem. With this purpose in mind
we performed a comparative performance analysis
of two parallel computing technologies, OpenMP u
nVidia CUDA.

OpenMP technology (Open Multiprocessing) is
an applied programming interface (API) for the
parallel programming with the use of shared
memory. C, C++ and Fortran programming
languages as well as Solaris, AIX, HP-UX, Linux,
Max OS X, Windows operating systems are
supported. OpenMP is developed with the
participation of big IT companies, such as AMD,
Intel, IBM, Cray and others [7].

CUDA (Compute Unified Device Architecture)
is the hardware-software platform for parallel
computing using nVidia graphic processor resources
for non-graphic computations [8]. CUDA
development started in 2006, C, C++ and Fortran
programming languages as well as Windows 8§,

Recent Contributions to Physics. Ne2 (61). 2017 109

A comparative analysis of openmp and cuda performance as exemplified by the computation of fourier transform

Windows XP, Windows Vista, Linux, Mac OS X
operating systems are supported.

Experiment

An experiment was conducted on the
measurement of Fourier transform execution time
on a multi-core processor (OpenMP) and a graphic
processor (CUDA). The experiments were carried
out on the hardware-software platform with the
following characteristics:

1. Processor: Intel Xeon E5-2620, CPU clock
2GHz (2.5 GHz with Turbo Boost technology),
number of cores/threads — 6/12;

2. Graphic processor: NVIDIA Tesla C2075;

3. Operating system: Windows 8, 64 bit, RAM:
DDR3, 16Gb;

Experimental results with OpenMP

Below is a fragment of the code written in C++
programming language and designed for the
experimental evaluation of Fourier transform
execution time with the application of OpenMP
technology:

for(intp=12;p>=1;p--)
I

2
clock tt beg, t end;
int idxFr = 0;
float Z Cnt = 50.0;
for(int FrNum = 500; FrNum <= 200000,
FrNum += ((FrNum < 5000) ? 500 : 5000))
{
t beg = clock();
for(inti=0;i<Z Cnt i++)
{
#pragma omp parallel for num_threads(p)
for(idxFr = 0, idxFr < FrNum, idxFr++)

CalcFourier(data_in, data_out, idxFr);

I

}y.

t end = clock();

cout << "Cores: " << p << "FrCnt =" <<
FrNum << " Time: " << (float)(t_end-
t beg)/(Z Cnt) << endl;

-

S

},.

This fragment consists of four for() cycles. In the
first, i. e. the outermost, cycle the number of threads
is specified through p variable. In the second cycle
the number of segments (frames) is changed and in

the third one the number of repeated experimental
measurements of the code execution time is
specified. The experiment was conducted 50 times
and finally the average computation time of Fourier
transform was determined. Fourier transform itself
is calculated using CalcFourier(data_in, data out,
idxFr) function. Parallelizing is performed with the
application of #pragma omp parallel for
num_threads(p) directive. The last line of the code
displays the number of threads, the number of
frames and corresponding Fourier transform
execution time for every iteration of the outermost
cycle.

Table 1 — The dependence of Fourier transform execution time
on the number of core/threads

Number of core/threads Execution time (ms)

1 3792

2 1989

3 1399

4 1050

5 843.9

6 705.1

7 883

8 817.4

9 750.3

10 695.8

11 634.9

12 589.7
[lustrated in Fig 1 is the experimental

relationship between Fourier transform execution
time and the number of threads in the case of
100,000 (one hundred thousand) frames.

4000

35001

3000

2500f
172
g
~ 2000} +

1500}

\
1000} * .
- T, +
500 . .
0 2 4 6 8 10 12
n

Figure 1 — The dependence of Fourier transform execution
time (t) on the number of core/threads (n) (OpenMP).
Number of frames 100,000

110 Ka3¥V Xab6apmbicel. ®usnka cepusicol. Ne2 (61). 2017

Medetov B. et al.

It is seen that at n=7 there is a jump on the curve
of the execution time dependence on the number of
threads. Taking this into consideration we examined
the two segments separately in order to obtain the
analytical dependence of execution time on the
number of threads. The first segment corresponds to
0 <n < 6 and the second one to 6 <n < 12. It can
be seen that in each of the segments the execution
time decreases monotonically. In that context, the
following two functions were selected for modelling
this dependence:

T,(n) = a*n’uT,(n) = a*xexp(b*n). (1)

Where a and b are several constant coefficients,
n is the number of threads. Then, based on
experimental data with the use of the least square
method a and b coefficients in the formula (1) were
defined and computational error estimated. 7i(n)
function can be represented logarithmically as:

log(Ty(n)) = log(a) + bxlog(n). (2)

If the following notation is introduced: y =
log(Ty(n)),x = log(n), 4 = log(a), then on a
logarithmic scale 7;(n) function will represent linear
function of the next form:

y=A+bxx. 3)

By introducing the following notation: y =
log (T2 (n)), A = log(a), x=n, for T,(n) function we
can derive corresponding straight-line equation of
the form (3).

A and b coefficients in the equation (3) were
defined from experimental data using the least
square method as follows:

_ Sli=0)yil
DT @
A=9y— bxX, 5)

where X u y are mean values of x and y respectively
that are calculated using the following formulas:

1

X = XX, (6)
where N is the total number of points, in this case
N=6.

Mean square root errors of determination of 4
and b are calculated as:

ISSN 1563-0315

_ |(Z@i—bxxi—A)%) (1
Sa = \j((n-2)) (n + Z(xi—f)z)' ®)
Relative error of 4 and b coefficients

S, = /M

TN (-2) T(x—%)?

determination is calculated from the formulas:

Saxty

Eqp =

Spxt
g = % * 100%,

* 100%,

where t, and tg are Student's coefficients, for the

number of measurements 6: ¢, = tp=2,45.

The table 2 lists error values calculated from
the formulas (9) and (10) for each segment and
each function type.

Table 2 — Relative errors of A and b parameter calculation

Segment Function &4 &
1 T, (n) 0,37 2,58
T,(n) 4,49 29,88
2 T, (n) 2,14 10,47
T,(n) 0,32 2,96

It follows from the table 2 that the first segment
is very well approximated by T; (n) function and the
second segment, on the contrary, by T, (n) function.
Thereby, execution time dependence on the number
of threads is piecewise nonlinear. For the threads
whose number is lower than that of hard cores this
dependence is powerlike whereas for the threads
whose number is higher than the number of hard
cores the dependence is exponential.

Fig 2 illustrates T; (n) and T, (n) function graphs
for the first segment (at 0 < n < 6). Based on
experimental evidence these functions are of the
following form:

T;(n) = 3821 x n~094 (11)

T,(n) = 4227 x e~032*n, (12)

Fig 3 illustrates T; (n) and T, (n) function graphs

for the second segment (at 6 < n < 12). Based on

experimental evidence these functions are of the
following form:

Recent Contributions to Physics. Ne2 (61). 2017 111

A comparative analysis of openmp and cuda performance as exemplified by the computation of fourier transform

T,(n) = 3895 * n=075, (13)

T,(n) = 1565 * e =008, (14)

Thereby, general function of Fourier transform
execution time dependence on the number of threads

4000

3500

3000R T (n)

2500}
(72}

~ 2000}
<T,(n)

15001

1000F

500

Figure 2 — Computation time () dependence
on the number of threads (1) on the central processor
(solid line — exponential function, dash line — power function)

Experimental results with CUDA

The experiment was conducted using the
following code:

clock tt1,t2;

cufftHandle plan;

cufftComplex *dev_out;

float * dev_in;

intn[l] = {NX};

float Exp _Cnt = 50.0;

for (int FrCnt = 500; FrCnt <= 500000; FrCnt
+= ((FrCnt < 5000) ? 500 : 5000))

{

tl = clock();

for(intm = 0; m < Exp_Cnt; m++)

{

cudaMalloc((void**)&dev_out,
FrCnt * sizeof(cufftComplex));

cudaMalloc((void**)&dev_in, FrCnt * NX *
sizeof{float));

cudaMemcpy(dev_in, host_in, FrCnt * NX *
sizeof(float), cudaMemcpyHostToDevice),

cufftPlanMany(&plan, 1, n,

NULL, 1, 0, //advanced data layout, NULL
shuts it off

(NX/2+1) *

on a multi-core processor using OpenMP
technology is of the following form:

3821 +n 9% at0<n<7

15
1565 % 70081 at6 < n < 12 (s)

T(n) = {

200 .
[T, ()

850F

800} .
SeT,n)

7501

ms

700t N
650¢

600r

550 1 1 1 1
7 8 9 10 11 12
n

Figure 3 — Computation time () dependence on the number
of cores/threads (1) on the central processor (solid line —
exponential function, dash line — power function)

NULL, 1, 0, //advanced data layout, NULL
shuts it off

CUFFT R2C, FrCnt);

cufftExecR2C(plan, dev_in, dev_out);

cudaMemcpy(host out, dev out, (NX/2+1) *
FrCnt * sizeof{cufftComplex),
cudaMemcpyDeviceToHost),

cufftDestroy(plan),

cudaFree(dev_out);

cudaFree(dev_in);

},.

t2 = clock();

cout << "FrCnt =" << FrCnt << "time =" <<
(12— t1)/Exp_Cnt << endl;

},.

CUDA has a built-in function “cufft” which
enables fast Fourier transform in parallel mode. In
this function cufftPlanMany(...) transformation plan
is created and then implemented with
cufftExecR2C(...) command. Similar to OpenMP
technology in this experiment the measurement is
performed 50 times and the mean transformation
time is calculated.

Fig. 4 displays transformation time dependence
on the number of frames.

112 Ka3¥V Xab6apmbicel. ®usnka cepusicol. Ne2 (61). 2017

Medetov B. et al.

800
700 -
600 -
500+
w
£ 400F
300 -

200

100+

DD DIS 1I 1 IE 2‘ 2‘5 é 3‘5 tll 45
N s
Figure 4 — Fourier transform execution time (t)
dependence on the number of frames (N) using
CUDA technology

Comparison of experimental results

We made a comparative analysis of Fourier
transform execution time dependence on the number
of frames. This dependence for OpenMP is linear as
is the case for CUDA. Fig. 5 displays these
dependences in one chart.

The chart indicates that for a large number of
frames Fourier transform execution time with the
use of CUDA technology is much shorter than with
OpenMP. However, for a relatively small number of
frames the execution time with OpenMP proves to
be shorter than with CUDA as shown on Fig. 6.

2000

1800}
1600}
1400}
1200}
€ 1000}
800}
600}
400}
200¢

Figure 5 — Execution time (t) dependence on the number
of frames (N). Dash line — OpenMP, solid line — CUDA

ISSN 1563-0315

From the Fig. 6 it follows that, if the number of
frames does not exceed 300 the OpenMP technology
is more efficient for computation of Fourier
transform, otherwise, i. e. with a large number of
frames, CUDA is a better option.

Conclusion

As was shown in our experimental research the
execution time for the Fourier transform on multi-
core central processor depends on the number of
cores nonlinearly. In addition, the dependence is not
continuous, it changes because of the number of
threads. The general form of function corresponding
to this dependence follows the formula (15). It is
possible that this form of dependence also applies to
any other similar tasks and not only to the
computation of Fourier transform.

The maximum efficiency of computation with
the use of OpenMP can be achieved when the
number of threads used in the program is twice the
number of hard cores (see table 1).

Therefore, in our experiment we made a
comparison between OpenMP and CUDA for the
case in which the number of threads was 12 on a
multi-core processor. The comparison showed that
under the conditions of the experiments for a small
number of frames OpenMP is more efficient in
terms of execution time, otherwise, CUDA offers an
advantage.

5.2161

5.2141

5.212r

5.21}

ms

~ 5.208}
5.206}
5.204}

5.202r
297 2975 298

298.5 299 299.5 300

N

Figure 6 — The initial section of Fourier transform execution
time (t) dependence graph on the number of frames (N).
Dash line — OpenMP, solid line — CUDA

Recent Contributions to Physics. Ne2 (61). 2017 113

A comparative analysis of openmp and cuda performance as exemplified by the computation of fourier transform

References

1 Chu S.L., Hsiao C.C. The Comparisons of OpenCL and OpenMP Computing Paradigm, International // Journal of Applied
Mathematics & Information Sciences, Apr. —2014. — P.333-340.

2 Dinkelbach H.U., Vitay J., Beuth F. and Hamker Fred H. Comparison of GPU-and CPU-implementations of mean-firing
rate neural networks on parallel hardware // Computation in Neural Systems. —2012. — Vol.23(4). — P.212-236.

3 Ledur C.L., Zeve C.M.D., C.S. dos Anjos J. Comparative Analysis of OpenACC, OpenMP and CUDA using Sequential and
Parallel Algorithms // 11th Workshop on Parallel and Distributed Processing (WSPPD), 2013.

4 Khankin K.M. Efficiency comparison of OpenMP, nVidia CUDA and StarPU technologies by the example of matrix
multiplication // Messenger of SUSU. Computer technology, management, electronics series. — 2013. — Vol.13, Ne 1. — P.34-41.

5 Yang C.-T., Huang C.-L., Lin C.-F. Hybrid CUDA, OpenMP, and MPI parallel programming on multi-core GPU clusters //
Computer Physics Communications. — 2011. — Vol.182. — P.266-269.

6 Rabiner L.R., Schafer R.W. Digital processing of speech signals. — Prentice-Hall, 1978.

7 OpenMP Application Program Interface. Version 3.1 July 2011. — http://www.openmp.org/mp-documents/OpenMP3.1.pdf

8 What is CUDA. — http://developer.nvidia.com/what-cuda

9 Hastie, Tibshirani and Friedman: The Elements of Statistical Learning (2nd edition). — Springer-Verlag, 2009. — 763 p.

References

1 S.L. Chu, and C.C. Hsiao, Journal of Applied Mathematics & Information Sciences, Apr., 340, (2014).

2 H.U. Dinkelbach, J. Vitay, F. Beuth and Hamker Fred H., Computation in Neural Systems, 23(4), 212-236, (2012).

3 Cleverson Lopes Ledur, Carlos M. D. Zeve, Julio C. S. dos Anjos, 11th Workshop on Parallel and Distributed Processing
(WSPPD), 2013.

4 K.M. Khankin, Messenger of SUSU, Computer technology, management, electronics series, 13(1), 34-41, (2013).
Yang C.-T., Huang C.-L., Lin C.-F. Hybrid, Computer Physics Communications, 182, 266-269, (2011).
L.R. Rabiner and R.W. “Schafer Digital processing of speech signals”, (Prentice-Hall, 1978).
OpenMP Application Program Interface. Version 3.1 July 2011. http://www.openmp.org/mp-documents/OpenMP3.1.pdf
What is CUDA. — http://developer.nvidia.com/what-cuda
Hastie, Tibshirani and Friedman, “The Elements of Statistical Learning” (2nd edition). (Springer-Verlag, 2009, 763 p.)

O 00 3O W

114 Ka3YV Xab6apuisicel. dusnka cepusicel. Ne2 (61). 2017

