УДК 533.9

А.И. Кенжебекова, С.К. Коданова*, Н. Бастыкова

Казахский национальный университет имени аль-Фараби, Казахстан, г. Алматы ^{*}E-mail: kodanova@mail.ru

Разработка математической модели диэлектрического барьерного разряда

Предложена модель, позволяющая описывать однородный барьерный разряд в азоте. Получены результаты расчета характеристик барьерного разряда в рамках одномерной гидродинамической модели. Ключевые слова: барьерный разряд, функция распределения электронов по энергиям, поверхностный заряд.

А.И. Кенжебекова, С.Қ. Қоданова, Н.Бастықова Диэлектрлік барьерлік разрядтың математикалық моделін жасау

Азоттағы біртекті барьерлік разрядты сипаттайтын модель ұсынылды. Бірөлшемді гидродинамикалық модель негізінде барьерлік разрядтың сипаттамаларын есептеу нәтижелері алынды. **Түйін сөздер:** барьерлік разряд, электрондардың энергия бойынша таралу функциясы, беттік заряд.

A.I. Kenzhebekova, S.K. Kodanova, N. Bastykova **Development of a mathematical model of a dielectric barrier discharge**

The model allows to describe the homogeneous barrier discharge in nitrogen. Results are obtained for calculating the characteristics of the barrier discharge in the one-dimensional hydrodynamic model. **Key words:** barrier discharge, the function of the electron energy distribution, surface charge.

Введение

Электрический пробой газового промежутка между диэлектриком и металлом используется во многих современных приборах и технологиях. Это плазменно-стимулированные процессы травления и осаждения, включая технологии получения тонких пленок, упрочнения поверхностей, обработка материалов – легирование и полировка. Многие элементы барьерного разряда используются в медицине, источниках ионов, технологиях обеззараживания. Важным новым направлением в использовании свойств барьерного разряда является возможность получения новых методов формирования сверхточных изображений в цифровой печати и копировальных машинах.

Для повышения эффективности работы устройств, в основе которых лежит барьерный разряд, возникает необходимость в детальном исследовании процессов, протекающих в барьерном разряде. Стабильность и характеристики разряда зависят от многих факторов, таких как напряжение, ток разряда, состав газа, геометрия и др.

Барьерный разряд с точки зрения особенностей физических процессов обладает двумя основными признаками:

1) Сильная нестационарность, обусловленная самой природой барьерного разряда – он в отличие от таунсендовского режима не может быть постоянным;

2) Большой первоначальный (сразу после пробоя) ток и его последующее экранирование поверхностным (у диэлектрика) зарядом приводит к большим и резко спадающим электрическим полям.

Эти особенности барьерного разряда приводят к определенным сложностям в численном моделировании.

Основные уравнения

Геометрия рассматриваемого барьерного разряда состоит из двух параллельных металлических электродов, левый электрод покрыт диэлектриком. Ширина газового промежутка 1 = 2 мм, а толщина диэлектрического материала d=1 мм. К правому электроду приложено переменное напряжение изменяющееся с частотой f=1 кГц и амплитудой U₀=2 кВ: $U = U_0 \sin(2\pi ft)$

Рисунок 1 – Схема геометрии разрядного промежутка

Плазма барьерного разряда изучается одновременно с решением кинетического уравнения Больцмана для функции распределения электронов по энергиям (ФРЭЭ), нестационарного дрейфово-диффузионного уравнения непрерывности для ионов и уравнения Пуассона для электрического поля [1].

Запишем кинетическое уравнение Больцмана для функции f(r, V) распределения электронов по энергиям:

$$\frac{1}{3}U\frac{\partial f_1}{\partial z} - \frac{e_0E(z)}{3}\frac{\partial(Uf_1)}{\partial U} = \frac{\partial}{\partial U} \left[2\frac{m_e}{M}U^2N_gQ^{el}(U)f_0\right]$$

$$-\sum_k UN_gQ_k^{in}(U)f_0 + \sum_k (U+U_k^{in})N_gQ_k^{in}(U+U_k^{in})f_0(U+U_k^{in},z)$$
(1)

$$\frac{\partial f_0}{\partial z} - e_0 E(z) \frac{\partial f_0}{\partial U} + H(U) f_1 = 0, \qquad (2)$$

где N_g – плотность нейтральных частиц; M – масса атома; $Q_{el}(U)$ – транспортное сечение рассеяния в упругих столкновениях; $Q_k^{in}(U)$ – сечение k-го неупругого столкновения с потерей электроном энергии U_k ; $H(U) = N_g Q^{el}(U) + \sum_k N_g Q_k^{in}(U)$ - коэффициент.

Если ФРЭЭ известна, то можно получить ряд макроскопических параметров электронов путем интегрирования функции распределения по энергиям. В частности, распределения плотности и температуры электронов определяются следующим образом:

$$n_{e}(z) = \int_{0}^{\infty} U^{1/2} f_{0}(U, z) dU, \qquad (3)$$

$$T_{e}(z) = \frac{2}{3} \frac{1}{n_{e}(z)} \int_{0}^{\infty} U^{3/2} f_{0}(U, z) dU$$
(4)

Для электронов и ионов коэффициенты подвижности и диффузии с хорошей точностью можно считать константами, в то время как для электронов μ_e , D_e и j_e могут быть определены по известной функции распределения электронов $f_0(r, z, U)$:

$$D_{e} = \frac{2e}{3m_{e}} \int \frac{U^{\frac{3}{2}}}{H(U)} f_{0}(U, z) dU,$$
(5)

$$\mu_{e} = -\frac{2e}{3m_{e}} \int \frac{U^{\frac{3}{2}}}{H(U)} \frac{\partial f_{0}(U,z)}{\partial U} dU, \qquad (6)$$

$$j_{e} = -\frac{e}{3}\sqrt{2/m}\int f_{1}(U,z)UdU \sim n_{e}\mu_{e}E_{z}.$$
(7)

Электрическое поле в разряде определяется суммарной концентрацией заряженных частиц и должно определяться самосогласованным образом с помощью уравнения Пуассона. Для этого необходимо включить в рассмотрение уравнение движения для ионов (других заряженных частиц). При построении модели будем принимать во внимание лишь положительные ионы. Для электронов и ионов каждого сорта уравнения неразрывности имеют вид:

$$\frac{\partial n_{e}(z,t)}{\partial t} + \frac{\partial}{\partial z} \left(n_{e}(z,t) \mu_{e} E(z,t) - D_{e} \frac{\partial n_{e}(z,t)}{\partial z} \right) = \alpha n_{e} \mathcal{G}_{e} - \beta n_{i} n_{e},$$
(8)

$$\frac{\partial n_i(z,t)}{\partial t} + \frac{\partial}{\partial z} \left(n_i(z,t) \mu_i E(z,t) - D_i \frac{\partial n_i(z,t)}{\partial z} \right) = \alpha n_e \vartheta_e - \beta n_i n_e.$$
(9)

где α – коэффициент ионизации; β - коэффициент рекомбинации; μ_e, D_e и μ_i, D_i – коэффициенты подвижности и диффузии электронов и

ионов, соответственно, зависящие в общем случае от приведенного электрического поля $E \ / \ N$.

Коэффициент ионизации и рекомбинации для азота определяются по формуле представленной в [2]:

$$\alpha = Ap \left[\exp\left(\frac{-B}{E/p}\right) \right], \qquad \beta = 2 \cdot 10^{-7} \text{ cm}^3 \text{cek}^{-1}.$$
(10)

где A=12 см⁻¹Торр⁻¹, B=342 В см⁻¹Торр⁻¹. Электрическое поле в барьерном разряде определяется распределением ионного и

электронного компонента плазмы и самосогласованным путем находится с помощью уравнения Пуассона:

$$-\frac{\partial^2 \phi(z,t)}{\partial z^2} = 4\pi e_0 \left[n_i(z) - n_e(z,t) \right] , \quad E(z,t) = -\frac{\partial \phi(z,t)}{\partial z}, \quad (11)$$

ISSN 1563-0315

ҚазҰУ хабаршы. Физика сериясы. № 3(46). 2013

которое будет решаться одновременно с уравнением (8) для данной плотности электронов $n_e(Z)$, полученной от кинетической модели для электронов (1).

Граничные условия, используемые в этой модели, заключаются в следующем: а) *на заземленном электроде*:

$$\Gamma_e = -\gamma \Gamma_i \,, \tag{12}$$

$$\frac{\partial \phi}{\partial z} = \varepsilon \frac{\partial \phi}{\partial z} \Big|_{z=d} - 4\pi\sigma$$
(13)

$$\frac{\partial \sigma}{\partial t} = -\Gamma_i + \Gamma_e \tag{14}$$

б) на правом электроде:

$$\phi = U(t) = U_0 \sin(2\pi f t); \quad \frac{\partial n_e}{\partial z} = 0; \quad n_i = 0$$
(15)

где
$$\Gamma_e = -\mu_e n_e E - D_e \frac{\partial n_e}{\partial z}$$
, $\Gamma_i = \mu_i n_i E - D_i \frac{\partial n_i}{\partial z}$.
плотности потоков электронов и ионов; σ -
поверхностная плотность зарядов на
поверхности диэлектрика толщиной d, с
диэлектрической проницаемостью ε ; γ -

коэффициент вторичной эмиссии. Начальные условия задаются в виде однородных в пространстве распределений концентраций n_i ионов и электронов n_e , при отсутствии электрического поля и поверхностных зарядов, $n_e = n_{e0}$, $n_i = n_{i0}$, $\phi = 0$, $\sigma = 0$.

Таким образом, уравнения (1), (5), (6), (8) и (10) образуют полную систему уравнений для определения трех неизвестных параметров плазмы $n_e(z)$, $n_i(z,t)$, E(z,t) и $\sigma(z,t)$. В уравнениях (8), (9) не учтены процессы излучения и фотоионизации в объеме разряда, а также не рассматривается процессы взаимодействия оседающих зарядов с поверхностью.

Результаты

На основе выше изложенной модели были проведены численные расчеты по следующей итеративной процедуре при следующих значениях параметров газоразрядной области и диэлектрика: толщина диэлектрика равна 1 мм, толщина газового промежутка - 2 мм, диэлектрическая проницаемость материала равна є=7. Задавались параметры газа азота при р = 760 Торр и среднего электрического поля $E_0 = 20$ кВ/см. Начальное аксиальное электрическое поле определялось балансом производства и гибели электронов и ионов в ионизирующих столкновениях и в рекомбинации на стенках разрядной трубки при амбиполярной диффузии электронов и ионов на стенку трубки. Анизотропная часть ФРЭЭ нормировалась с учетом условия, то в центре трубки плотность разрядного тока равна нулю. Это условие позволяло определить плотность электронов из уравнения (3). Уравнение Больцмана вычислялись с некоторым аксиальным электрическим полем $E_{0z} = \varphi_a/L$, которое обеспечивало равенство производства электронов и ионов при ионизации газа и их гибели в рекомбинации на стенках и на частицах. Новое значение плотности электронов вычислялось с помощью (3), а новая плотность ионов определялась из условия нейтральности. Затем вычислялись новые значения потенциала частиц и их зарядов. Для заданной концентрации частиц уравнение Больцмана для ФРЭЭ и условие нейтральности пересчитывались с помощью итераций до тех пор, пока все параметры плазмы и частиц не переставали изменяться.

На рис.2 представлено распределение изотропной части ФРЭЭ в плазме азота на оси разряда, рассчитано с помощью разработанной программы с учетом электрон-электронных столкновений при $E_0 = 2$ кВ/см. Логарифм изотропной части ФРЭЭ, отложенный по вертикали, представлен в зависимости от Uкоординат. Из графика видно, горб ФРЭЭ периодически смещается в область с большей кинетической энергией. При достижении энергии, при которой электроны в состоянии возбудить первые уровни (~10 эВ) ФРЭЭ, возникает возможность протекания разряда в области с маленькими энергиями. Ниже представлена зависимость концентрации электронов и ионов от разрядного промежутка. Из рисунка 3 видно, что дрейф ионов в электрическом поле противоположно направлен дрейфу электронов. Направленное движение электронов в сторону анода приводит к тому, что они накапливается на поверхности диэлектрика. Ионы, образовавшиеся при ионизации, на поверхности катода вызывают вторичную электронную эмиссию.

Рисунок 2 – Функция распределения электронов по энергиям в плазме азота с учетом столкновений при E = 2 кB/см.

Рисунок 3 – Распределение концентраций ионов и электронов в разрядном промежутке

Заключение

Разработана модель диэлектрического барьерного разряда в азоте при атмосферном

давлении под действием переменного напряжения. Проведено одномерное численное моделирование барьерного разряда в газовом

ISSN 1563-0315

ҚазҰУ хабаршы. Физика сериясы. № 3(46). 2013

промежутке между диэлектриком и металлом при давлении *p*=760 Торр. Моделирование позволяет предсказание разряда импульса, возникающего при приложении напряжения в зазоре, которое достигает порогового значения. Численное моделирование барьерного разряда в азоте при атмосферном давлении выполнено без учета фотоионизации газа. Уравнения переноса заряженных частиц и уравнение Пуассона для нахождения самосогласованного электрического поля решались методом итераций.

References

1 Camoylovich V.G., Gibalov V.I., Kozlov K.V. Fizicheskaya khimiya bar'yernogo raz¬ryada. M.: Izdatel'stvo Moskovskogo universiteta, 1989.

2 Surzhikov S.T. Fizicheskaya mekhanika gazovykh razryadov. M.: Izdatel'stvo MGTU imeni N.E. Baumana, 2006