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Introduction 
Systems with coupled scalar fields hold their certain interest 

in physical applications. In particular, such systems are used in 
constructing particle models and their interactions within the 
framework of quantum field theory [1]. In different aspects such 
systems have been already repeatedly considered, see for 
example Refs. [2-8]. Here we present a qualitative study of one 
of such systems having the potential energy in the form:  

  (1) 

where     are two real scalar fields (usual or phantom/ghost ones), 
  are some constants. This potential had been 

used earlier by us in treatments of models of cosmological and 
astrophysical objects in general relativity. These researches showed 
that: (a) for the four-dimensional case there exist regular spherically 
and cylindrically symmetric solutions [9-11], and also cosmological 
solutions [12,13] both for usual and phantom scalar fields; (b) for 
the higher dimensional cases there exist the thick brane solutions 
[14-17] supported by usual and phantom scalar fields. 

From the physical point of view, these solutions exist because of 
the special form of the interaction potential (1) having two local and 
two global minima. It means that there are two different vacua. At 
the infinity, as the radial coordinate     , these scalar fields are 
located in that vacuum in which their are in the local minimum. The 
existence of regular solutions with finite energy is only possible for 
certain (eigen) values of parameters of a problem. Such eigenvalue 
problems were solved by us using the shooting method (see for 
details of the shooting procedure in Ref. [11]). 

Note that the type (1) potential has been also used in the 
paper [18] for modeling superconductivity using two coupled 
Ginzburg-Landau equations. When the interaction between the 
fields in (1) is excluded, i.e. at     , one has two uncoupled 
type Ginzburg-Landau equations. On the other hand with an 
account taken of the interaction there are new effects, in 
particular, the presence of regular solutions, not present in the 
case of one Ginzburg-Landau equation. 
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Use of spherical and cylindrical symmetries in 
the above papers leads to obtaining the sets of 
coupled non-autonomous ordinary differential 
equations whose qualitative study is quite 
complicated. Here we consider a simplified 
problem when the system with the potential (1) is 
examined in cartesian coordinates. This allows to 
get an autonomous system of two second order 
ordinary differential equations for which it is 
possible to perform the qualitative analysis and 
estimate the general behavior of the system. the 
goal of the paper is the equalitative investigation 
of autonomous ordinary differential equations 
describing plane solutions for two coupled 
Ginzburg-Landau equations. 

Qualitative analysis 

Let us consider the physical system with the 
potential (1) whose Lagrangian can be presented 
in the form  

 (2) 

where         , and the plus sign refers to 
usual scalar fields, and the minus sign - to 
phantom/ghost ones. The energy-momentum 
tensor of the system is: 

    (3) 

The corresponding field equations in 
cartesian coordinates can be written as:  

        (4) 

        (5) 

Choosing the initial value of the scalar field 
  and introducing the dimen-

sionless variables  
,   , and also 

, let us rewrite the 
system in the form (taking into account the 
expression for the potential from (1)): 

          (6) 

          (7) 

           (8) 

          (9) 

The fixed points of this system are: 

 (10) 

   (11) 

    (12) 

 (13) 

    (14) 

  (15) 

The points     refer to local minima, the 
points     are the global minima,   is the local 
maximum, and the points   refer to saddle 
points. Let us designate the values of the 
potential (1) at these points as    where the index 
 corresponds to letters from   to  , and 

and . 
Obviously that 

(16) 

It is also possible to find the following 
relations:  

Dividing the third expression by the first one 
and the second one and taking into account the 
condition (16), one can show that the conditions 
guaranteeing the existence of the local and global 
minima are: (i) for the local minimum:  

; (ii) for the global minimum: 
. 

next, to determine the type of the fixed 
points it is necessary to make a characteristic 
matrix of the system (6)-(9). Using this matrix, 
one can write out the characteristic forth order 
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algebraic equation. Then the values of roots of 
this equation    determine the type of the fixed 
points. In our case we have the following roots: 

(i) at the points     (the local minimum): 

(ii) at the points  (the global minimum): 

(iii) at the point   (the local maximum):

(iv) at the points   (the saddle points):

Taking into account the above mentioned 
conditions of existence of the local and global 

minima, one can make the classification of the 
fixed points presented in table I. 

Table 1  The classification of the fixed points of the system (6)-(9) for different values of the parameters    and   . 

Points A, B  Points C, D  Point E  Point F 
Unstable node Unstable node  Saddle Depends on the values of the parameters 

Saddle Saddle  Saddle Depends on the values of the parameters 
Saddle Saddle  Saddle Depends on the values of the parameters 
Saddle Saddle  Unstable node Depends on the values of the parameters 

Numerical analysis 

From the point of view of obtaining a set of 
solutions (but not only of two integral curves as 
in a case of saddle fixed points) type “unstable 
node” fixed points are more interesting. In the 
model under consideration, they are situated: (i) 
at the points of the local (   ) and global (   ) 
minima at positive      , i.e. for usual scalar  

fields; (ii) at the point of the local maximum   at 
negative      , i.e. for the case of phantom/ghost 
fields. Note that in the latter case negative    
effectively correspond to the system with usual 
fields but with a reversed sign of the potential 
(1). In this case the point of the local maximum 
  becomes the point of the local minimum, and 
solutions asymptotically tend to that point. 

Table 2  The initial values of    and the corresponding values of the parameters  for the system (6)-(9). 

1 1.0 0.3 1.25104535 1.1056305 0.0441854 
2 1.0 1.4544857 1.1878968 0.148259 
3 1.0 1.736266 1.30665 0.41906 
4 1.0 1.9628773 1.40650056 0.76536 
5 1.0 2.158048 1.495301394 1.17074 
6 1.0 1.0 2.33213652 1.5764432135 1.62578 
7 1.0 2.4908109 1.6518053896 2.1246 
8 1.0 2.63757479 1.7225756427 2.66294 
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All the fixed points, being the stationary 
points of the system (6)-(9), are situated at 

  . Then static solutions, if they exist, 
should start from these points. One of physically 
interesting problems is a    symmetric solution. 
In this case the symmetry plane is chosen at 
   where the derivatives              . 

Examples of such solutions are presented in Fig. 
1. Using the energy-momentum tensor (3) and
the above dimensionless variables, the
dimensionless energy density can be derived in
the following form

       (17) 

where the constant       from the potential (1) is 
chosen equal to            to make the energy 
density to be equal to zero at infinity. Using this 
expression, one can plot the corresponding 
graphs for the energy presented in Fig. 2. The 
total energy (mass) of the system is defined by 
the expression  

Calculating this integral, the values of the 
total energy presented in the last column of table 
II have been found. Also, using the table, one can 
plot the graphs of dependence of the parameters 
   and the total energy   on the initial values 

of    presented in Fig. 3. The corresponding 
phase portraits are shown in Figs. 4, 5. 

Fig. 1  The scalar fields     from the system (6)-(9) for the 
different initial values of    taken from table II. Asymptotically, 
as     , the scalar field    , and   goes to values of   
from table II corresponding to the local minimum   from (10). 

Fig. 2  The dimensionless energy density   of the system (6)-(9) 
from (17) for the different initial values of    taken from table II. 
The top line corresponds to the greatest        , and the 
bottom one - to the lowest       . 



ISSN 1563-0315                                           ҚазҰУ хабаршысы. Физика сериясы. №1 (52). 2015 73

Dzhunushaliev V. et all.

Fig. 3  The dependence of the parameters of the system  and the total 
energy   on the initial values of    for the system (6)-(9). The data are taken 
from table II. 

Fig. 4  The phase portrait of the system 6)-(9) for the scalar field   plotted using the 
parameters from table II. The points    correspond to the fixed point   from (10). 
All solutions go to these points at      starting with the different initial values at 
the point   corresponding to the origin of coordinates    . The index   runs over  

  in accordance with numeration from table II. 
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Fig. 5  The phase portrait of the system 6)-(9) for the scalar field   
plotted using the parameters from table II. The points    correspond to the 
origin of coordinates    with the different initial values taken from 
table II. Asymptotically, as   , the solutions tend to the fixed point 

from (10) where  . The index   runs over        in 
accordance with numeration from table II. 

The system (4)-(5) allows introducing 
another dimensionless variables. Namely, 
introducing the dimensionless variables   

, 
and also  , one can 
rewrite this system as follows: 

 (18) 

 (19) 

           (20) 

 (21) 

The values of the parameter   and initial 
conditions       and       at which regular 
solutions do exist can be obtained from the 
values presented in table II by corresponding 
rescaling the variables:   

  . the 
corresponding new values of the mentioned 
parameters are presented in table III. Using this 
table, one can plot the graphs of dependence of 
the initial values  on  presented in Fig. 6. 

Table 3  The initial values  and corresponding to them values of the parameter   for the system (18)-(21). 

0.799332 0.239799 0.883765 0.0225663 
0.687528 0.307472 0.816713 0.0481829 
0.575949 0.364262 0.752563 0.0800622 
0.509456 0.394623 0.71655 0.101201 
0.463382 0.414461 0.692895 0.116487 
0.428791 0.428791 0.675965 0.128174 
0.401476 0.439795 0.66316 0.137485 
0.379136 0.4486 0.653091 0.145127 
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Fig. 6  The dependence of the initial values  and the total energy    on the 
value of the parameter   for the system (18)-(21). The data are taken from table III 

Summarizing, here we have considered the 
system with two non-gravitating coupled scalar 
fields in cartesian coordinates. For such a system, 
as well as in general relativity, the task of finding 
regular solutions amounts to searching 
eigenvalues of the parameters of the model. The 
model contains six available parameters: two 
initial values of the scalar fields  and four 
free parameters             ( can be 
always excluded by redefinition of the 
parameters  , and the initial values of 
derivatives       are chosen to be equal to 
zero for obtaining  symmetric solutions). Then 
for obtaining regular solutions it is necessary to 
find eigenvalues of only two of these six 
parameters. For example, we have been sought 
the eigenvalues of the parameters    and    in 
the system (6)-(9). For the obtained eigenvalues 
regular solutions start at     and tend to the 
fixed point   corresponding to the local 
minimum of the system (for the case of usual 
scalar fields considered here, see Figs. 1, 4 and 
5), and to the local maximum (for phantom/ghost 
fields). One can see from Fig. 3 that there exist 
some lowest eigenvalues of the parameters   
and    at which the total energy of the system   
goes to zero. This corresponds to the existence of 

some critical    and    at which physically 
sensible solutions with a nonzero total 
energy still exist. Similarly, for the system 
(18)-(21) there exists some critical eigenvalue 
of the parameter   at which     as well (see 
Fig. 6). 

Type “unstable node” fixed points allow the 
existence of sets of solutions starting from these 
points at      both for usual fields (the fixed 
points     and    ) and for phantom/ghost 
scalar fields (the point  ). Thus the qualitative 
analysis shows that from the point of view of a 
possibility of obtaining regular localized 
solutions the system with two coupled scalar 
fields in question seems to be quite perspective. 
The previous studies from Refs. [9]-[17] show 
that inclusion of gravitational fields does not 
change the qualitative behavior of solutions. 
Then one would expect, for example, that in the 
presence of gravitational fields the lower 
restriction on the values of the parameters    and 
  giving physically sensible solutions will also 
exist. 

Thus we have investigated two coupled 
autonomous Gingburg – Landau equations as 
eigenvalue problem, found all critical points and 
the corresponding phase portraits are found.  
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