ПРОЕКТИРОВАНИЕ ВОЛНОВОЙ ФУНКЦИИ ⁷Li{*at*} НА ⁵He{*an*}+*d* КЛАСТЕРНЫЙ КАНАЛ. II РЕЗУЛЬТАТЫ РАСЧЕТОВ

Н.В. Афанасьева

Казахский национальный университет им. аль-Фараби, НИИЭТФ, Алматы

В рамках двухтельной αt -модели ядра ⁷Li рассчитаны спектроскопические S_d -факторы отделения дейтронов в канале ⁵He+*d* с использованием различных моделей волновой функции ядра ⁵He{ αn }, приводится сравнение с расчетами, проведенными ранее в рамках многочастичной модели оболочек (ММО).

В работе [1] был представлен математический формализм построения волновых функций (ВФ) относительного движения и расчета спектроскопических S_d -факторов отделения дейтронов в канале ⁵ He + d.

В настоящей работе представлены результаты численных расчетов ВФ относительного движения и спектроскопических S_d -факторов отделения дейтронов в канале ⁵He{ αn }+d.

Для построения радиальных ВФ относительного движения ядра ⁵Не и *d* методом проектирования и расчетов спектроскопических S_d -факторов отделения дейтронов в канале ⁵Не+*d* использовались радиальные ВФ ядра ⁵Не{ αn } в различных моделях [2]:

1) ВФ ядра ⁵He{ αn }, полученная в рамках метода резонирующих групп (МРГ) [3]:

$$R(r) = N \cdot r \left[\exp\left(-\frac{2}{5}\eta\alpha r^2\right) + c \cdot \exp\left(-\frac{2}{5}\xi\alpha r^2\right) \right],$$
(1)

где $\alpha = 0,514 \text{ фм}^{-2}$, $\eta = 0,20$, $\xi = 0,84$, c = 0,344, $\vec{r} = \vec{R}_{\alpha} - \vec{r}_{n}$, N = 0,052342 – нормировочный коэффициент. В дальнейшем будем ссылаться на данную функцию (1) как на модель I.

2) Аппроксимированная кластерная ВФ рассеяния в αn -канале:

$$R_{\alpha n} = r \sum_{i} C_{i} \exp\left(-\beta_{i} r^{2}\right).$$
⁽²⁾

Коэффициенты C_i , β_i ВФ (2) приведены в работе [2]. Далее будем ссылаться на данную функцию (2) как на модель II.

Также в расчетах для описания дейтрона была использована ВФ Рейда с 5компонентной параметризацией Альбери, для трития использовалась одна из ВФ МРГмодели [4;5], а для описания ядра ⁷Li{ αt } – кластерная ВФ, параметры которой были взяты из работы [6].

На рис. 1–3 представлены ВФ относительного 5 He+*d*-движения (*S*- и *D*- волны), построенные с использованием моделей I и II ВФ ядра 5 He{ αn }.

С полученными ВФ относительного движения были проведены расчеты соответствующих спектроскопических S_d -факторов отделения дейтронов в канале ⁵He+d. Результаты расчетов, а также соответствующие веса *S*- и *D*- компонент ВФ относительного движения приведены в таблице 1. Также в таблице 1 для сравнения приводятся результаты расчетов S_d -факторов отделения дейтронов в канале ⁵He+d, проведенные ранее в рамках ММО [7].

Рис. 1. Волновые функции относительного движения в канале 5 He + d для моделей I и II ВФ ядра 5 He { αn }. *S*-волна

Рис. 2. Волновые функции относительного движения в канале ${}^{5}\text{He}+d$ для моделей I и II ВФ ядра ${}^{5}\text{He}\{\alpha n\}$. $a - D_{1/2}$ -волна; $\delta - D_{3/2}$ -волна

Таблица 1 – Результаты расчетов спектроскопических S_d -факторов для канала ⁵He{ αn }+d

Модель	S_0	S_2	$P_{S}, \%$	$P_{D}, \%$
Ι	0,393	0,290	57,54	42,46
II	0,372	0,315	54,15	45,85
Расчет MMO [7]	0,817	0,670	54,9	45,1

Как видно из рис. 1 и 2, *S*-волна радиальной ВФ относительного движения в канале ⁵He+*d* имеет узел: для модели I – при r = 1,14 фм, для модели II – при r = 1,38 фм. *D*-волны радиальной ВФ относительного ⁵He+*d*-движения узла не имеют. Данная ситуация находится в хорошем согласии с трансляционно-инвариантной моделью оболочек (ТИМО).

В целом, численные значения волновых функций относительного ⁵He+*d*-движения, полученные для модели I, немного меньше значений, полученных с использованием модели II ВФ ядра ⁵He{ αn }.

Поясним теперь качественно получившиеся значения S_d -факторов для канала 5 He{an}+d. Как следует из определения спектроскопического S-фактора - это интеграл от

квадрата модуля соответствующей радиальной канальной функции относительного движения [1], т.е.

$$S = \int \left| \Psi \left(\vec{\rho} \right) \right|^2 \rho^2 d\rho \,. \tag{3}$$

В этом контексте приведем соответствующие графики подынтегральных выражений согласно определению (3) – рисунки 3 и 4.

Рис. 3. Квадрат ВФ относительного движения в канале ${}^{5}\text{He} + d$ для моделей I и II ВФ ядра ${}^{5}\text{He}\{\alpha n\}$. *S*-волна

Рис. 4. Квадрат ВФ относительного движения в канале ⁵He + d для моделей I и II ВФ ядра ⁵He{ αn }. $a - D_{1/2}$ -волна; $\delta - D_{3/2}$ -волна

Из рис. 3 и 4 видно, что в случае *S*-волны численные значения подынтегральной ВФ для модели I выше, чем для модели II, а в случае *D*-волны наблюдается обратная ситуация. Это наглядным образом отражается на величине соответствующих спектроскопических S_d - факторов (таблица 1): для модели I величина S_0 выше, чем для модели II, а значение S_2 , наоборот, для модели I меньше, чем для модели II.

Если сравнивать полученные значения спектроскопических S_d -факторов для канала ⁵He+*d* со значениями, полученными ранее в рамках ММО, то они примерно в два раза меньше. Интерпретировать такие результаты можно как указание на заметный вклад канала

 $^{7}\text{Li}\{\alpha t\} \rightarrow d^{+5}\text{He}\{dt\}$. В этой связи становится актуальным в дальнейшем провести расчеты спектроскопических S_{d} -факторов для канала $^{5}\text{He}+d$ с учетом dt-конфигурации ядра ^{5}He и сравнить их с теми, что были получены в настоящей работе и работе [7].

Литература

1. Афанасьева Н.В., Буркова Н.А., Жаксыбекова К.А. Проектирование волновой функции $^{7}Li\{\alpha t\}$ на $^{5}He\{\alpha n\}+d$ кластерный канал. І Элементы формализма. // Настоящий сборник.

2. Афанасьева Н.В., Буркова Н.А., Жаксыбекова К.А., Уразалин А.А. Виртуальный канал распада ⁷Li →⁵ He+d .// Вестник КазНУ. Сер. Физ. 2010. №4(35), с. 3-8.

3. Сахиев С. Исследование кластерной структуры ядра ⁹Ве в низкоэнергетических ядерных процессах. Дис. ... кандидата физ.-мат. наук. – Алматы: КазНУ, 1998.

4. Вильдермут К., Тан Я. Единая теория ядра. - М.: Мир, 1980. 502 с.

5. Дубовиченко С.Б., Жусупов М.А. Кластерные волновые функции в методе резонирующих групп. // Изв. АН КазССР. Сер. физ.-мат. 1987. №4. С. 64-74.

6. Дубовиченко С.Б. Астрофизические S-факторы радиационного ³He⁴He, ³H⁴He и ²H⁴He-захвата. // Ядерная физика, 2010. Т. 73. №9. с.1573-1584.

7. Бояркина А.Н. Структура ядер 1р-оболочки. Москва: Изд. МГУ, 1973 г. 62 с.

⁵Не{*an*}+*d* КЛАСТЕРЛІ КАНАЛЫНА ⁷Lі{*at*} ТОЛҚЫНДЫҚ ФУНКЦИЯСЫН ПРОЕКТІЛЕУІ. ІІ ЕСЕПТЕУ НӘТИЖЕЛЕРІ

Н.В. Афанасьева

⁷Li ядросының αt жобасы негiзiнде әр түрлi ⁵He{ αn } ядросының үлгiлерiмен спектроскопиялық S_d -факторлары есептелiндi. Бұған дейiнгi белгiлi теориялық есептеулермен салыстыру келтiрiлген.

PROJECTION OF THE ⁷Li{αt} WAVE FUNCTION ON THE ⁵He{αn}+d CLUSTER CHANNEL. II RESULTS OF CALCULATIONS

N.V. Afanasyeva

Within the αt -model for ⁷Li nucleus spectroscopic S_d -factors of deuterons separation have been calculated by using different ⁵He{ αn } wave function models. A comparison with available theoretic calculations performed within the multiparticle shell model is given.