ОТКЛОНЕНИЕ ЛУЧЕЙ СВЕТА В ГАЛО ТЕМНОЙ МАТЕРИИ ГАЛАКТИК

Г.М. Авхунбаева¹, Е.К. Аймуратов², А.Ж. Умиралиева²

¹Астрофизический институт им. Фесенкова, Алматы ²Казахский Национальный Педагогический Университет им. Абая, Алматы

В работе исследовано отклонение лучей света в гало темной материи галактик, которые описываются профилями Наварро-Френка-Уайта, Баркета, Эйнасто и Кравцова-Клыпина. Численные оценки углов отклонения дают величины ~0."00001, которые на два порядка меньше точности, достигнутой при гравитационном микролинзировании.

1 Введение

Согласно современному представлению общая морфологическая структура галактики включает следующие компоненты: центральная часть (ядро галактики), окружаещий её балдж, газопылевой диск, звездный кластер и гало темной материи [1]. Важно подчеркнуть, что гало темной материи составляет основную часть общей массы галактики (до 90%).

В данной работе мы рассмотрим движение света в галактике, считая, что на характер его распространения влияет только темная материя. Это означает, что мы рассматриваем движение света вдали от цетральной части галактики, размеры которой обозначим *R*.

Будем считать, что размеры галактики в целом равны r_0 . Тогда область движения лучей

света зададим условием
$$r_0 >> r >> R$$
 . Отсюда следует, что $\frac{r}{r_0} << 1$.

Для изучения отклонения лучей света в гало темной материи необходимо знать её пространственное распределение.

В литературе известен ряд профилей темной материи. Это профиль Наварро–Френка-Уайта [2], профиль Баркета [3], профиль Эйнасто [4], профиль Кравцова - Клыпина [5] и другие [6],[7]. Совершенно понятно, что каждый из этих профилей будет приводить к различным эффектам в движений лучей света. Это обусловлено тем, что галактика, благодаря своей массе, искривляет окружающее её пространство-время. А искривлённое пространство-время, согласно [8], можно рассматривать как своеобразную среду с соответствующим эффективным показателем преломления.

Целью данной работы является исследование движения лучей света в гало темной материи, описываемой различными профилями, и сопоставление показателей преломления такой среды для нахождения наибольшего угла отклонения лучей света. Это, в свою очередь, дает возможность улучшить теорию гравитационного микролинзирования.

2 Модели сферически-симметричного гало темной материи

Запишем общий вид метрики сферически - симметричного гравитационного поля:

$$dS^{2} = -e^{\lambda(r)}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + e^{\nu(r)}c^{2}dt^{2}, \qquad (1)$$

где, согласно [9],

$$e^{\lambda(r)} = 1 + \frac{8\pi G}{c^2 r} \int_0^r \rho(r) r^2 dr , \qquad (2)$$

$$e^{\nu(r)} = \exp \int_{r}^{\infty} \left(\frac{8\pi G}{c^2} \left(\rho(r) + p \right) r e^{\lambda} - \frac{d\lambda}{dr} \right) dr .$$
(3)

Здесь $\rho(r)$ и p(r) плотность вещества и его давление, соответственно. Теперь для решения нашей задачи нужно задать конкретные выражения этих величин. Во введении было отмечено, что в литературе известен ряд профилей темной материи. В нашей работе, для достижения поставленной цели, используются только некоторые из них.

i) Для профиля Навварро-Френка-Уайта

$$\rho(r) = \frac{\rho_0}{\frac{r}{r_0} \left(1 + \frac{r}{r_0}\right)^2}$$
(4)

имеем следующее решение

$$e^{\lambda(r)} = 1 + \frac{8\pi G}{c^2 r} \int_0^r \frac{\rho_0}{\frac{r}{r_0} \left(1 + \frac{r}{r_0}\right)^2} r^2 dr , \qquad (5)$$

$$e^{\nu(r)} = \exp \int_{r}^{\infty} \left(\frac{8\pi G}{c^{2}} \frac{\rho_{0}}{\frac{r}{r_{0}} \left(1 + \frac{r}{r_{0}}\right)^{2}} r e^{\lambda} - \frac{d\lambda}{dr}\right) dr .$$
(6)

Здесь и далее по тексту ρ_0 - плотность темной материи в центре галактики.

Для вычисления этих интегралов воспользуемся условием $\frac{r}{r_0} << 1$, которое позволяет подынтегральные выражения разложить в ряд Тейлора. В дальнейшем мы ограничимся слагаемыми не выше порядка $\frac{8\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right)$. С указанной точностью имеем

$$e^{\lambda(r)} = 1 + \frac{4\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right),$$
(7)

$$e^{\nu(r)} = 1 + \frac{8\pi G}{c^2} \rho_0 r_0^2 - \frac{4\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right).$$
(8)

Поэтому метрика центрально-симметричного гравитационного поля гало темной материи представится в виде

$$dS^{2} = -\left[1 + \frac{4\pi G}{c^{2}}\rho_{0}r_{0}r\right]dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) + \left[1 + \frac{8\pi G}{c^{2}}\rho_{0}r_{0}^{2} - \frac{4\pi G}{c^{2}}\rho_{0}r_{0}r\right]c^{2}dt^{2}.$$
(9)

Напомним, что для исследования движения лучей света в некоторой метрике – нахождение показателя преломления гравитационного поля – необходимо приравнять нулю её 4-х мерный интервал [8]. Поскольку в ценрально–симметричной метрике показатель преломления может зависеть только от радиуса, то будем считать $\theta = \frac{\pi}{2}$, $\varphi = 0$. Таким образом, из (9) имеем

$$-\left[1 + \frac{4\pi G}{c^2}\rho_0 r_0 r\right] dr^2 + \left[1 + \frac{8\pi G}{c^2}\rho_0 r_0^2 - \frac{4\pi G}{c^2}\rho_0 r_0 r\right] c^2 dt^2 = 0.$$
(10)

Вводя скорость движения света в среде как

$$\upsilon = \frac{dr}{dt},\tag{11}$$

из (10) получаем

$$\left[1 + \frac{8\pi G}{c^2} \rho_0 r_0^2 - \frac{4\pi G}{c^2} \rho_0 r_0 r\right] c^2 = \left[1 + \frac{4\pi G}{c^2} \rho_0 r_0 r\right] \upsilon^2.$$
(12)

Поскольку показатель преомления среды (в нашем случае гравитационного поля гало темной материи) по определению равен

$$n = \frac{c}{\nu},\tag{13}$$

то из (12) с указанной выше точностью находим его величину как

$$n = 1 + \frac{4\pi G}{c^2} \rho_0 r_0^2 \left(1 + \frac{r}{r_0} \right).$$
(14)

Отсюда видно, что показатель преломления прямо-пропорционально зависит от расстояния.

іі) Рассмотрим теперь профиль Баркета

$$\rho(r) = \frac{\rho_0}{\left(1 + \frac{r}{r_0}\right)\left(1 + \frac{r^2}{r_0^2}\right)},$$
(15)

так, что

$$e^{-\lambda(r)} = 1 - \frac{8\pi G}{c^2 r} \int_0^r \frac{\rho_0}{\left(1 + \frac{r}{r_0}\right) \left(1 + \frac{r^2}{r_0^2}\right)} r^2 dr , \qquad (16)$$

$$e^{\nu(r)} = \exp \int_{r}^{\infty} \left(\frac{8\pi G}{c^{2}} \frac{\rho_{0}}{\left(1 + \frac{r}{r_{0}}\right)\left(1 + \frac{r^{2}}{r_{0}^{2}}\right)} r e^{\lambda} - \frac{d\lambda}{dr}\right) dr .$$
(17)

Для вычисления этих интегралов также воспользуемся условием $\frac{r}{r_0} << 1$, которое позволяет подынтегральные выражения разложить в ряд Тейлора, ограничиниваясь

слагаемыми не выше порядка $\frac{8\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right)$. С указанной точностью имеем

$$e^{\lambda(r)} = 1, \tag{18}$$

$$e^{\nu(r)} = 1 + \frac{8\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right).$$
(19)

Здесь метрика центрально-симметричного гравитационного поля гало темной материи имеет следующий вид

$$dS^{2} = -dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta \ d\varphi^{2}) + \left[1 + \frac{8\pi G}{c^{2}}\rho_{0}r_{0}r\right]c^{2}dt^{2}.$$
 (20)

Снова используем условие, что для исследования движения лучей света в некоторой метрике – нахождение показателя преломления гравитационного поля – необходимо приравнять нулю её 4-х мерный интервал [8]. Считая $\theta = \frac{\pi}{2}$, $\varphi = 0$, из (20) имеем

$$dr^{2} = \left[1 + \frac{8\pi G}{c^{2}} \rho_{0} r_{0}^{2} \left(\frac{r}{r_{0}}\right)\right] c^{2} dt^{2}.$$
 (21)

Используя выражение для скорости света в среде (11), из (21) имеем

$$\left[1 + \frac{8\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right)\right] c^2 = v^2.$$
(22)

Введя, как и ранее, показатель преломления среды $n = \frac{c}{v}$, из (22) с указанной выше точностью находим его величину

$$n = 1 + \frac{4\pi G}{c^2} \rho_0 r_0^2 \left(\frac{r}{r_0}\right).$$
(23)

Отсюда видно, что показатель преломления по-прежнему прямо-пропорционально зависит от расстояния.

ііі)Наш следующий шаг – исследование профиля Эйнасто. Он имеет вид

$$\rho(r) = \widetilde{\rho}_0 \exp\left\{-\frac{2}{\alpha} \left[\left(\frac{r}{r_0}\right)^{\alpha} - 1\right]\right\}.$$
(24)

В отличие от оригинальной работы [4], мы введем переобозначение $\rho_0 = \tilde{\rho}_0 \exp\left(\frac{2}{\alpha}\right)$, а

второй экспоненциальный сомножитель разложим в ряд Тейлора. Тогда профиль Эйнасто примет вид

$$\rho(r) = \rho_0 \left[1 - \frac{2}{\alpha} \left(\frac{r}{r_0} \right)^{\alpha} \right].$$
(25)

Поэтому выражение (25) формально соответствует всем вышеприведенным обозначениям.

Подставляя (25) в (2) и (3) и, как обычно, проводя там разложения в ряд Тейлора по параметру $\frac{r}{r_0} << 1$, получаем

$$e^{-\lambda(r)} = 1 - \frac{8\pi G}{c^2 r} \int_0^r \rho_0 (1 - \frac{2}{\alpha} \left(\frac{r}{r_0}\right)^{\alpha}) r^2 dr , \qquad (26)$$

И

$$e^{\nu(r)} = \exp \int_{r}^{\infty} \left[\frac{8\pi G}{c^2} \left(\rho_0 \left(1 - \frac{2}{\alpha} \left(\frac{r}{r_0} \right)^{\alpha} \right) r e^{\lambda} \right) - \frac{d\lambda}{dr} \right] dr .$$
 (27)

Вычисляя, как и прежде, с требуемой точностью интегралы в (26) и (27), имеем:

$$e^{\lambda(r)} = 1 - \frac{8\pi G}{c^2} \frac{\rho_0}{3} r^2 \left(1 - \frac{6}{\alpha(\alpha+3)} \left(\frac{r}{r_0}\right)^{\alpha}\right),$$
(28)

$$e^{\nu(r)} = 1 + \frac{8\pi G}{c^2} \rho_0 r_0^2 \left[\frac{1}{2} \left(1 - \left(\frac{r}{r_0} \right)^2 \right) - \frac{2}{\alpha(\alpha+2)} \left(1 - \left(\frac{r}{r_0} \right)^{2+\alpha} \right) \right] - \frac{8\pi G}{c^2} \frac{\rho_0}{3} r^2 \left(1 - \frac{6}{\alpha(\alpha+3)} \left(\frac{r}{r_0} \right)^{\alpha} \right).$$
(29)

Таким образом, показатель преломления гравитационного поля гало темной материи галактики описывается следующим выражением

$$n(r) = 1 + \frac{4\pi G}{c^2} \rho_0 r_0^2 \frac{2}{3} \left(\frac{r}{r_0}\right)^2 \left(1 - \frac{6}{\alpha(\alpha+3)} \left(\frac{r}{r_0}\right)^{\alpha}\right) - \frac{4\pi G}{c^2} \rho_0 r_0^2 \left[\frac{4}{\alpha(\alpha+2)} \left(1 - \left(\frac{r}{r_0}\right)^{2+\alpha}\right) - \left(1 - \left(\frac{r}{r_0}\right)^2\right)\right].$$
(30)

iv) И, наконец, рассмотрим профиль Кравцова–Клыпина [5]

Здесь, в отличие от профилей Наварро–Френка-Уайта и Баркета, используются уже три неопределенных коэффициента *α*, *β*, *γ*. Эта неопределенность позволяет исследовать более общие профили темной материи.

$$\rho(r) = \frac{\rho_0}{\left(\frac{r}{r_0}\right)^{\gamma} \left[1 + \left(\frac{r}{r_0}\right)^{\alpha}\right]^{\frac{\beta - \gamma}{\alpha}}}.$$
(31)

Для нахождения метрики гравитационного поля, порожденной распределением Кравцова–Клыпина, воспользуемся выражением для бинома Ньютона

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \dots$$
(32)

С его помощью разложим выражение в знаменателе, стоящее в квадратных скобках.

Кроме того, для учета условия $\frac{r}{r_0} << 1$, которое было использовано выше, положим $\alpha = 1$.

Тогда

$$\rho(r) = \rho_0 \left[\frac{1}{\left(\frac{r}{r_0}\right)^{\gamma}} - (\beta - \gamma)(\beta - \gamma - 1) \left(\frac{r}{r_0}\right)^{\beta - 2\gamma - 2} \right].$$
(33)

Подставляя это выражение в (2) и (3), находим коэффициенты метрического тензора

$$e^{-\lambda(r)} = 1 - \frac{8\pi G}{c^2 r} \int_0^r \left[\frac{\rho_0}{\left(\frac{r}{r_0}\right)^{\gamma}} - (\beta - \gamma)(\beta - \gamma - 1)\rho_0\left(\frac{r}{r_0}\right)^{\beta - 2\gamma - 2}\right] r^2 dr , \qquad (34)$$

И

$$e^{\nu(r)} = \exp \int_{r}^{\infty} \left[\frac{8\pi G}{c^{2}} \left(\frac{\rho_{0}}{\left(\frac{r}{r_{0}}\right)^{\gamma}} - (\beta - \gamma)(\beta - \gamma - 1)\rho_{0} \left(\frac{r}{r_{0}}\right)^{\beta - 2\gamma - 2} r e^{\lambda} \right) - \frac{d\lambda}{dr} \right] dr .$$
(35)

Проведя здесь все необходимые вычисления, получаем с нужной точностью явный вид этих коэффициентов

$$e^{\lambda(r)} = 1 + \frac{1}{3 - \gamma} \frac{8\pi G}{c^2} \rho_0 r_0^2 \left[\left(\frac{r}{r_0} \right)^{2-\gamma} - \frac{(\beta - \gamma)(\beta - \gamma - 1)}{(\beta - 2\gamma + 1)} \left(\frac{r}{r_0} \right)^{\beta - 2\gamma} \right], \quad (36)$$

$$e^{\nu(r)} = 1 + \frac{8\pi G}{c^2} \rho_0 r_0^2 \frac{1}{2 - \gamma} \left(1 - \frac{5 - 2\gamma}{3 - \gamma} \left(\frac{r}{r_0} \right)^{2-\gamma} \right) - \frac{8\pi G}{c^2} \rho_0 r_0^2 \frac{(\beta - \gamma)(\beta - \gamma - 1)}{(\beta - 2\gamma)} \left(1 - \frac{2\beta - 4\beta + 1}{\beta - 2\gamma + 1} \left(\frac{r}{r_0} \right)^{\beta - 2\gamma} \right). \quad (37)$$

Таким образом, показатель преломления для профиля Кравцова-Клыпина оказывается равным

$$n(r) = 1 + \frac{4\pi G}{c^2} \rho_0 r_0^2 \frac{(\beta - \gamma)(\beta - \gamma - 1)}{(\beta - 2\gamma)} \left(1 - \frac{3\beta - 6\beta + 1}{\beta - 2\gamma + 1} \left(\frac{r}{r_0} \right)^{\beta - 2\gamma} \right) - \frac{4\pi G}{c^2} \rho_0 r_0^2 \frac{1}{(2 - \gamma)} \left(1 - \frac{7 - 3\beta}{3 - \gamma} \left(\frac{r}{r_0} \right)^{2 - \gamma} \right).$$
(38)

3 Отклонение лучей света в гравитационных полях гало темной материи галактик

Для нахождения отклонения лучей света в гравитационных полях гало темной материи галактик, которые были получены выше, воспользуемся известным из оптики неоднородных сред общим выражением [10]:

$$\Delta \theta = \int_{-\infty}^{\infty} \frac{d}{dr} (\ln n) dr = 2 \ln n \Big|_{-\infty}^{r} .$$
(39)

Подставляя сюда все полученные нами показатели преломления, последовательно получаем

$$\Delta \theta_{NFW} = 2 \frac{4\pi G}{c^2} \rho_0 r_0^2 \left(1 + \frac{r}{r_0} \right), \tag{40}$$

$$\Delta \theta_{B} = 2 \frac{4\pi G}{c^{2}} \rho_{0} r_{0}^{2} \left(\frac{r}{r_{0}}\right), \tag{41}$$

$$\Delta \theta_{E} = 2 \frac{4\pi G}{c^{2}} \rho_{0} r_{0}^{2} \frac{2}{3} \left(\frac{r}{r_{0}}\right)^{2} \left(1 - \frac{6}{\alpha(\alpha+3)} \left(\frac{r}{r_{0}}\right)^{\alpha}\right) - 2 \frac{4\pi G}{c^{2}} \rho_{0} r_{0}^{2} \left[\frac{4}{\alpha(\alpha+2)} \left(1 - \left(\frac{r}{r_{0}}\right)^{2+\alpha}\right) - \left(1 - \left(\frac{r}{r_{0}}\right)^{2}\right)\right],$$
(42)

$$\Delta \theta_{KK} = 2 \frac{4\pi G}{c^2} \rho_0 r_0^2 \frac{(\beta - \gamma)(\beta - \gamma + 1)}{\beta - 2\gamma} \left(1 - \frac{3\beta - 6\gamma + 1}{\beta - 2\gamma + 1} \left(\frac{r}{r_0} \right)^{\beta - 2\gamma} \right) - 2 \frac{4\pi G}{c^2} \rho_0 r_0^2 \frac{1}{(2 - \gamma)} \left(1 - \frac{7 - 3\gamma}{3 - \gamma} \left(\frac{r}{r_0} \right)^{2 - \gamma} \right)$$
(43)

Для оценки величины этих углов примем, что средняя плотность темной материи имеет значение $\rho_0 \sim 10(-23) c/cm^3$, размеры типичной галактики $r_0 \sim 50 M\Pi c$, а текущий радиус $r \sim 0.5 M\Pi c$. Тогда, учитывая, что $\frac{G}{c^2} \approx 10(-28) cm/c$, а $\frac{r}{r_0} \approx 10(-2)$, получаем следующую оценку для основного сомножителя $\frac{4\pi G}{c^2} \rho_0 r_0^2 \approx 3.10(-5)$. Соответственно, для угла отклонения Наварро-Френка-Уайта получаем величину $\Delta \theta_{NFW} \approx 6.10(-5)$, для угла отклонения Баркета $\Delta \theta_B \approx 6.10(-5)$. В угловых единицах, следовательно, имеем $(1'' \approx 5.10(-6))$

$$\Delta \theta_{_{NFW}} \approx +12'', \qquad (44)$$

$$\Delta \theta_{_{R}} \approx +12'', \tag{45}$$

Что касается углов для метрики Эйнасто и Кравцова-Клыпина, то, оставляя в (42) и (43) члены, которые зависят лишь от неопределенных коэффициентов, имеем с нужной точностью

$$\Delta \theta_E \approx -12'' \left(\frac{4}{\alpha(\alpha+2)} + 1 \right), \tag{46}$$

$$\Delta \theta_{KK} = +12'' \left(\frac{(\beta - \gamma)(\beta - \gamma + 1)}{\beta - 2\gamma} - \frac{1}{2 - \gamma} \right)$$
(47)

4 Заключение

Анализируя найденные результаты, можно сделать следующие выводы:

Во-первых, полученные значения углов отклонения представляются очень большими. В самом деле, величина отклонения лучей света в гравитационном поле Солнца равна $\Delta \theta = 1.75''$ [8] и лишь на порядок меньше выражений (44) и (45). Найденные нами численные оценки, как не трудно видеть, существенно зависят от величины плотности темной материи. Если использовать среднее для всей Вселенной её значение $\rho_{DM} \sim 10(-30) \ c/cm^3$ [1], то

полученные углы отклонения в радианной мере будут иметь порядок ~ 10(-12) или в угловой мере ~ 0."00001. Заметим, что при гравитационном линзировании галактик достигнутая на сегодняшний день точность составляет 0."001.

Во-вторых, в случае профилей Наварро-Френк-Уайта, Баркета и Кравцова-Клыпина происходит фокусирование лучей света, так как $\Delta \theta > 0$, а случае профиля Эйнасто происходит расфокусирование лучей света, поскольку $\Delta \theta < 0$. При этом ясно, что выражения (46) и (47) существенно зависят от значения коэффициентов α , β , γ .

Действительно, для угла отклонения Эйнасто $\alpha \neq -2$, $\alpha \neq 0$. Поэтому область определения этого параметра $-2 < \alpha < 0$. Наибольшее значение угла отклонения получается при $\alpha = -1$, таким образом, что $\Delta \theta_{E} \approx +48''$.

И, наконец, для метрики Кравцова-Клыпина из (47) следует, что $\beta \neq 2\gamma$, $\gamma \neq 2$.

Авторы выражают благодарность научному руководителю д.ф.-м.н. профессору Леониду Михайловичу Чечину за постановку проблемы и помощь в решении задачи.

Литература

1. Чернин А.Д. Темная энергия и всемирное антитяготение // УФН 178 (267–300) 2008; Чернин А.Д. Космический вакуум // УФН 171 (1153–1175) 2001.

2. Navarro J.F., Frenk C.S., White S.D.M. The Structure of Cold Dark Matter Halos // arXiv: astro-ph / 9508025, 7 Aug. 1995; Herritt D., Navarro J.E., Ludlow A., Jenkins A. Universal Density Profile for Dark and Luminous Matter // arXiv: 0502515 V1 [astro- ph] 24 Feb. 2005.

3. Burket A. The Structure of Dark Matter in Dwarf Galaxies // arXiv: arstro-ph / 9504041, 20 Nov.1999.

4. Einasto J. The Dark Matter and Large Scale Structure // arXiv: astro-ph / 0012161 V1, 7 Dec.2000.

5. Avila-Reese V., Firmani C., Klypin A., Kravtsov A.V. The Density Profiles of Dark Matter Haloes: Diversity and Dependence on Environment // arXIV: astro-ph/9906260, 1999.

6. Catena R., Ullio P. A Novel Determination of the Local Dark Matter Density // arXiv:09070018. V2. [astro-ph] 30 Jul.2009.

7. Evans N.W., An J.H. Distribution Function of Dark Matter // arXiv: astro- ph / 0511687 V2, 19 Nov.2005.

8. Фок В.А. Теория пространства, времени и тяготения // М., Физматгиз, 1961, 156 с.

9. Зельдович Я.Б., Новиков И.Д. Теория тяготения и эволюция звёзд // М., Наука, 1971.

10. Друде П. Оптика // Л.-М., Гостехиздат, 1935, 437 с.

ГАЛАКТИКАНЫҢ ҚАРАҢҒЫ МАТЕРИЯ ГАЛОСЫНДАҒЫ ЖАРЫҚ СӘУЛЕСІНІҢ АУЫТҚУЫ

Г.М. Авхунбаева, Е.Қ. Аймұратов, А.Ж. Өміралиева

Бұл жұмыста галактиканың қараңғы материя галосындағы жарық сәулесінің Наварро-Френк-Уайт, Баркет, Эйнасто және Кравцов-Клыпин профильдері арқылы жазылған ауытқулары зерттелді. Бұрыштық ауытқулардың сандық көрсеткіштері гравитациялық микролинзирлеу кезінде 2 ретті аз дәлдікпен ~0,"00001 шамасын берді.

THE DEFLECTION OF LIGHT RAYS IN THE GALAXIES' HALOS OF DARK MATTER

G.M. Avkhunbayeva, Y.K. Aimuratov, A.Zh. Umiralieva

The deflection of light rays in the halos of dark matter described by Navarro-Frenk-White, Burket, Einasto and Kravtsov-Klypin profiles were searched. Numerical estimations for deflecting angles gives magnitude $\sim 0.$ "00001, that are two orders smaller than achievement accuracy at the gravitational microlensing.