OSCILLATING INSTABILITY IN A FINITE SIZE CYLINDRICAL CHANNEL
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The problem of stability of mixing in a ternary isothermal mixture is solved for a finite-size diffusion
channel using the perturbation method. We provide a comparative analysis between the positions of the
oscillating stability line for a plane infinite layer and for ‘the mass permeability’ of a cylindrical channel of a
finite size. Our theoretical results are in a good agreement with the experimental data obtained by the two-
flasks method for the N>-0.333He+0.667Ar system.

Of great significance in nature and engineering are mass flows caused by the interaction of
two thermodynamic forces. This mass transfer is called convection which results from double
diffusion [1]. It was shown experimentally and analytically [2] that ‘cross rolls’ give rise to drastic
oscillating processes, which lead to absolute instability in some regions of a uniform flow of fluids.
The regions of stable and unstable flows of fluids on the plane of Reynolds and Rayleigh numbers
were determined for oil and water. Heat exchange processes during melting of ice in the Arctic
Regions were studied in [3]. At a temperature of 0°C the freshwater layer, which is formed from
ice, underlies the seawater layer. It is known that the density of freshwater is higher than that of
seawater, therefore this system is unstable. The authors of [3] noted that the density gradient is
inverted at large Rayleigh numbers and the heat exchange rate increases by a factor of
approximately five to ten.

Numerical studies on the heat transfer by natural convection in a square cavity, which was
performed by using the method of discrete ordinates, have demonstrated that some parameters (as
the Rayleigh numbers, the buoyancy index, the Lewis numbers and the optical thickness of the
liquid) influence the flow structure [4]. It was shown that given certain parameters of the system
one can observe the heat transfer caused by natural convection, double diffusion or irradiation. An
analysis of the stability of a ferrofluid heated from below in a homogeneous vertical magnetic field
has showed that a convective instability occurs at a critical temperature gradient [5]. The
parameters, at which an oscillating instability arises, were determined by the Galerkin method for a
magnetoconductive fluid layer between two free boundaries compressing the surface [5].

A study of diffusion in isothermal ternary gas systems with a stable stratification of the
density showed that an instability of the mechanical equilibrium and subsequent development of a
convective process take place in some systems depending on the thermodynamic parameters (e.g.
the pressure, the temperature and the concentration of components) and the geometrical dimensions
of the diffusion channel (the length and the characteristic size) [6, 7]. In the literature this
phenomenon is referred to as instability of the mechanical equilibrium [6], diffusion instability [1],
or ‘double diffusion’ [8]. These studies demonstrated that the diffusion process is replaced by a
convective process of various intensities at a certain value of the thermodynamic parameter, mainly
the pressure and/or the concentration.

This paper deals with the process of mixing in a gas system comprised of helium, argon, and
nitrogen. The gas system was chosen such that the density of the overlying gas was equal to the
density of the underlying mixture. The experimental studies were performed by a two-flask method,
which is widely used to analyze characteristics of diffusion processes [9—11]. A binary gas mixture
of 0.333He+0.667Ar is placed in the bottom flask of the diffusion apparatus, while pure nitrogen is
placed in the top flask. The diffusion channel has a form of a cylinder of length L=6 cm and of
radius 7=2 mm. The temperature of the flasks 7=298K and the experimental time /=20 min are kept
constant. The experimental pressure varies in the range from 0.5 MPa to 4.0 MPa.
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Fig. 1. Dependence of the parameter o of helium on the pressure

The results of measurements performed earlier are given in figure 1 as the pressure
dependence of the dimensionless parameter o of helium, which is the most lightweight component
of the mixture. The parameter o is defined as the ratio between the experimental and calculated
concentrations assuming the diffusion mixing. One can see from figure 1 that the diffusion transfer
takes place in the system up to the pressure of 2.6 MPa, as it follows from an agreement of the
experimental and theoretical data, i.e. a=1 within the statistical errors. The further increase of the
pressure leads to the instability of mechanical equilibrium of the gas mixture. This results in a
drastic discrepancy of the observed concentration from the theoretical value, meaning that o>1. We
would like to explain this discrepancy and to find the conditions, under which the oscillating
instability appears in a ternary mixture.

The class of problems related to the concentration isothermal convection, particularly the
motion of a ternary gas mixture in the presence of a spatial inhomogeneity caused by a non-
uniformity of the densities in the gravity field is described by a set of equations of fluid dynamics.
They include Navier--Stokes equations of motion and the two equations for conservation of the
number of particles in the mixture and for the components, respectively [7, 12]:
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average velocities, respectively; p is the mixture density; p is the pressure; ¢; is the concentration of
the i-th component (the mixture components are ordered in a such way that m;<m3;<m,, with m;
being the molecular mass of the i-th component); g is the gravitational acceleration; 7 (¢) are

coefficients of the shift (bulk) viscosities; D;. denotes the ‘observed’ three-component diffusion

constants.
The set of equations (1) are supplemented by the general state equation of the environment:

L= p(cl,cz,p), T = const. (2)



To solve the set of equations (1)—(2), it is necessary to specify the boundary conditions. We
assume therefore that the length of the cylindrical channel L along the z-axis (figure 2) is much
larger than its radius 7.
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Fig. 2. Vertical cylindrical diffusion channel

In this case, the forces Vp and pg act only in the direction of the z-axis. Therefore, we are
interested only in the projection of the Navier-Stokes equation to the z-axis:
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Comparing the terms of this equation for L >>2r and neglecting the terms proportional to
2

r—z, we have the following equation:
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In the case of steady-state mixing of the gases in the absence of free convection p = p,(z),

P = p,(z), the equation (3) takes the form
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Integrating (4) leads to a classical parabolic profile for the velocity
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Subtracting (4) from (3), we have perturbation equations:
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In rearranging from (3) to (6) we neglect possible pressure perturbations, because the pressure
relaxation time is much shorter than the concentration relaxation time.

Let us consider the equation for convective diffusion in the set of equations (1). The steady-
state diffusion in the vertical channel with the induced convection is described by the following
equation
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Taking into account that the concentration is independent of the transverse coordinate and
subtracting (7) from (1) we obtain the following perturbation equation:
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where D; and D, are some quantities, which have dimensionality and values on the order of
the diffusion constant, it easy to understand that the differences between the corrections of the
mass-average velocity and the number-average velocity is insignificant in the equation (8).
Therefore, v' in the above equations can be substituted by u'.

Thus, the set of equations for perturbations of the velocity u' and the concentrations ¢, in the

vertical channel becomes as follows:
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Let us solve the set of equation (10). Taking the characteristic dimension of the problem to be
equal to the channel radius » and rendering (10) dimensionless, we have (omitting the primes):
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where P, = Y is the Prandtl diffusion number; R = g'BlD—flL is the Rayleigh partial number for
ii v ii
the i-th component; v is the kinematic viscosity; T; = 7 denotes the parameters, which

22
determine the relationship between the ‘observed’ diffusion coefficients: V¢,, =—4y .

To determine the criticality conditions for the oscillating instability, the solution of the set of
equations (11) is sought in the form
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where n=1,3,5,... stands for characteristic odd modes of perturbations, and A is the perturbation
time decrement. The boundary conditions assume that the velocity perturbations and the flow of
matter on the walls of the channel become zero:

Substituting (12) into the set of equations (11) and excluding sequentially the amplitudes of
the concentrations and the velocity subsequently, we obtain a cubic equation with respect to A.
This expression determines characteristic roots for any n depending on the Rayleigh and Prandtl
numbers, the concentration gradients in the following form:
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Depending on the values of p, ¢, r, and s, the equation (13) gives either three real roots
(monotonic perturbations) or one real and two complex conjugate roots (the latter describe
oscillatory perturbations). If the decrement of the cubic equation (13) has a nonzero imaginary part
(ﬂ =A +iaJ), the perturbation terms oscillate at a frequency equal to the imaginary part of the
decrement @ ; attenuation (rise) of the perturbations is determined by the sign of A . The loss of
stability of the gas mixture means that the decrements A of some characteristic perturbations at a
certain number R, (or numbers R, ,) reverse sign. The perturbations start growing at R > R, , while
they are decaying at R <R,. Vanishing of the decrement A determines the condition that the

perturbation is "neutral" meaning that it neither rises nor decays. This condition characterizes the
boundary of the equilibrium stability with respect to a given perturbation.
Setting 4. =0 for determination of the stability boundaries, the equation (13) can be rewritten

in the form of the following expressions:
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The latter equations determine the critical conditions for the Rayleigh partial numbers and the
perturbation frequency @ at the boundary of oscillating stability. Equating the brackets in (15) to
zero, from (14) and (15) it is possible to deduce an equation for the oscillating instability line:
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in which the Rayleigh numbers R, and R, satisfy the condition (16). It should be noted that the
straight line defined by (16) has the meaning of a neutral line for oscillatory perturbations only in
the @” >0 -section.

Figure 3 shows the mutual positions of the oscillating (KK) and monotonic (MM) stability
lines for the (N,—0.333He+0.667Ar)-system studied experimentally (cf figure 1). The points
standing for the experimental data were calculated assuming a nonlinear distribution of the
concentration along the length of the finite-size diffusion channel:
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Fig. 3. Stability lines for the (N,—0.333He+0.667Ar)-system. The points correspond to the pressure values of
(1)0.584, (2) 1.074, (3) 2.06, (4) 2.55, (5) 3.04, (6) 3.53, and (7) 3.92 MPa, respectively

It is seen from figure 3 that the experimental points corresponding to the diffusion lie below
the lines of the monotonic and oscillating stabilities. The points corresponding to the convective
mass transfer are located above the line KK, but below the line MM. This is an indication that this
system has an oscillating instability of the mechanical equilibrium. A comparison of the oscillating
instability line calculated for a flat vertical layer (K>K;) [12] shown in figure 3 and the line
calculated for the ‘mass-impermeable’ cylindrical channel (K;K;) on the basis of the proposed
model shows that the "diffusion—convection" transition boundary are in a better agreement with the
experimental data.

In summary, we have shown that an oscillating instability in a gravity field appears in the
three-component mixture when the pure component is at the top and the binary mixture is on the
bottom of the diffusion channel. Secondly, if the length of the diffusion cylindrical channel is finite
and the concentration is nonlinearly distributed along the channel our results reflect properly the
experimental conditions. Finally, the position of the line of the oscillating instability calculated for a
‘mass-impermeable’ cylindrical channel agrees well with the earlier measurements. This agreement
is much better than that for the simplest case of a two-dimensional infinite vertical layer.
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HEKTEJII'EH HUJINHAPJIIK KAHAJIIAYBI TEPBEJIMEJII OPHBIKCbBI3/JIbIK
N.B. Ilosipkos

En a3 ocep omiciH KojjaHa OTBIPBIN LICKTENreH OUPQPY3UIBIK KaHajuAa H30TEPMIIK
YIITKOMIIOHEHTTIK OPHBIKTHI apanacyasiH ece6i memriigi. [llekTenren Macca oTKI30SHTIH MIITHHAPITIK KaHAT
MEH JKa3blK IIEKCi3 KadarTap YIIiH TepOenMelli OpPHBIKTBUIBIK CBI3BIFBIHA CalBICTHIPMAIIBI Talgayiap
xacangpl. Exikonbanbik omic apkeuibl N, — 0.333He + 0.667A4r >xylieciHe XYpTi3iireH TEOPHUSIIBIK
ecenTeysep HOTHKeNIepl SKCIEPHUMEHT MOH/IEPIMEH JKaKChl COMKeC Kelei.

KOJIEBATEJIbHASI HEYCTOMYUBOCTH B OTPAHUYEHHOM HUJIMHIPUYECKOM
KAHAJIE

N.B. IlosipkxoB

MeTonoM Majioro mapamerpa pellicHa 3agada 00 YCTOMYMBOCTH MpoLecca CMEIICHUS B TPOWHOMN
M30TEPMUYECKON CMecH IS orpaHmueHHOro auddys3nonHoro kanana. /laHo cpaBHEHHE MOJIOKEHUE JTMHUN
KOJICOATENILHONW YCTOHYUBOCTH JISI TUIOCKOTO CJIOS M MaCCOHEMPOHHUIAEMOTO IMIHHIPUYIECKOTO KaHama
KOHEYHBIX Pa3MepoB. TeopeTHUECKUE PE3yJIbTaThl MCCICAOBAHHUS COIOCTABJICHBI C OMBITHBIMU JTaHHBIMH,
MOJIYICHHBIMHU JBYXKOJIOOBBIM METOI0M Aiist cucteMbl N> — 0,333 He + 0,667A4r.
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