
 7

OSCILLATING INSTABILITY IN A FINITE SIZE CYLINDRICAL CHANNEL 
 

I.V. Poyarkov 
Department of Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan 

 
The problem of stability of mixing in a ternary isothermal mixture is solved for a finite-size diffusion 

channel using the perturbation method. We provide a comparative analysis between the positions of the 
oscillating stability line for a plane infinite layer and for ‘the mass permeability’ of a cylindrical channel of a 
finite size. Our theoretical results are in a good agreement with the experimental data obtained by the two-
flasks method for the N2–0.333He+0.667Ar system. 
 

Of great significance in nature and engineering are mass flows caused by the interaction of 
two thermodynamic forces. This mass transfer is called convection which results from double 
diffusion [1]. It was shown experimentally and analytically [2] that ‘cross rolls’ give rise to drastic 
oscillating processes, which lead to absolute instability in some regions of a uniform flow of fluids. 
The regions of stable and unstable flows of fluids on the plane of Reynolds and Rayleigh numbers 
were determined for oil and water. Heat exchange processes during melting of ice in the Arctic 
Regions were studied in [3]. At a temperature of 0°C the freshwater layer, which is formed from 
ice, underlies the seawater layer. It is known that the density of freshwater is higher than that of 
seawater, therefore this system is unstable. The authors of  [3] noted that the density gradient is 
inverted at large Rayleigh numbers and the heat exchange rate increases by a factor of 
approximately five to ten.  

Numerical studies on the heat transfer by natural convection in a square cavity, which was 
performed by using the method of discrete ordinates, have demonstrated that some parameters (as 
the Rayleigh numbers, the buoyancy index, the Lewis numbers and the optical thickness of the 
liquid) influence the flow structure [4]. It was shown that given certain parameters of the system 
one can observe the heat transfer caused by natural convection, double diffusion or irradiation. An 
analysis of the stability of a ferrofluid heated from below in a homogeneous vertical magnetic field 
has showed that a convective instability occurs at a critical temperature gradient [5]. The 
parameters, at which an oscillating instability arises, were determined by the Galerkin method for a 
magnetoconductive fluid layer between two free boundaries compressing the surface [5].  

A study of diffusion in isothermal ternary gas systems with a stable stratification of the 
density showed that an instability of the mechanical equilibrium and subsequent development of a 
convective process take place in some systems depending on the thermodynamic parameters (e.g. 
the pressure, the temperature and the concentration of components) and the geometrical dimensions 
of the diffusion channel (the length and the characteristic size) [6, 7]. In the literature this 
phenomenon is referred to as instability of the mechanical equilibrium [6], diffusion instability [1], 
or ‘double diffusion’ [8]. These studies demonstrated that the diffusion process is replaced by a 
convective process of various intensities at a certain value of the thermodynamic parameter, mainly 
the pressure and/or the concentration.  

This paper deals with the process of mixing in a gas system comprised of helium, argon, and 
nitrogen. The gas system was chosen such that the density of the overlying gas was equal to the 
density of the underlying mixture. The experimental studies were performed by a two-flask method, 
which is widely used to analyze characteristics of diffusion processes [9−11]. A binary gas mixture 
of 0.333He+0.667Ar is placed in the bottom flask of the diffusion apparatus, while pure nitrogen is 
placed in the top flask. The diffusion channel has a form of a cylinder of length L=6 cm and of 
radius r=2 mm. The temperature of the flasks T=298K and the experimental time t=20 min are kept 
constant. The experimental pressure varies in the range from 0.5 MPa to 4.0 MPa. 
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Fig. 1. Dependence of the parameter α of helium on the pressure 

 
The results of measurements performed earlier are given in figure 1 as the pressure 

dependence of the dimensionless parameter α of helium, which is the most lightweight component 
of the mixture. The parameter α is defined as the ratio between the experimental and calculated 
concentrations assuming the diffusion mixing. One can see from figure 1 that the diffusion transfer 
takes place in the system up to the pressure of ≈2.6 MPa, as it follows from an agreement of the 
experimental and theoretical data, i.e. α=1 within the statistical errors. The further increase of the 
pressure leads to the instability of mechanical equilibrium of the gas mixture. This results in a 
drastic discrepancy of the observed concentration from the theoretical value, meaning that α>1. We 
would like to explain this discrepancy and to find the conditions, under which the oscillating 
instability appears in a ternary mixture. 

The class of problems related to the concentration isothermal convection, particularly the 
motion of a ternary gas mixture in the presence of a spatial inhomogeneity caused by a non-
uniformity of the densities in the gravity field is described by a set of equations of fluid dynamics. 
They include Navier--Stokes equations of motion and the two equations for conservation of the 
number of particles in the mixture and for the components, respectively [7, 12]:  
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average velocities, respectively; ρ is the mixture density; р is the pressure; сi is the concentration of 
the i-th component (the mixture components are ordered in a such way that m1<m3<m2, with mi 
being the molecular mass of the i-th component); gr  is the gravitational acceleration; η (ξ) are 
coefficients of the shift (bulk) viscosities; *

ijD  denotes the ‘observed’ three-component diffusion 
constants.  

The set of equations (1) are supplemented by the general state equation of the environment:    
 

( )рсс ,21,ρρ = , constT = .                       (2) 
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To solve the set of equations (1)−(2), it is necessary to specify the boundary conditions. We 
assume therefore that the length of the cylindrical channel L along the z-axis (figure 2) is much 
larger than its radius r. 

 

 
 

Fig. 2. Vertical cylindrical diffusion channel 
 
In this case, the forces p∇  and grρ  act only in the direction of the z-axis. Therefore, we are 

interested only in the projection of the Navier-Stokes equation to the z-axis:  
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Comparing the terms of this equation for rL 2>>  and neglecting the terms proportional to 

2

2

L
r , we have the following equation: 
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In the case of steady-state mixing of the gases in the absence of free convection )(0 zρρ = , 

)(0 zpp = , the equation (3) takes the form  
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Integrating (4) leads to a classical parabolic profile for the velocity  
 

⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂−

= zg
z
prxu 0

0
22

0 2
ρ

η
.              (5) 

 
Subtracting (4) from (3), we have perturbation equations:  
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In rearranging from (3) to (6) we neglect possible pressure perturbations, because the pressure 

relaxation time is much shorter than the concentration relaxation time.  
Let us consider the equation for convective diffusion in the set of equations (1). The steady-

state diffusion in the vertical channel with the induced convection is described by the following 
equation  
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Taking into account that the concentration is independent of the transverse coordinate and 

subtracting (7) from (1) we obtain the following perturbation equation:  
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Consider that  
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where D1 and D2 are some quantities, which have dimensionality and values on the order of 

the diffusion constant, it easy to understand that the differences between the corrections of the 
mass-average velocity and the number-average velocity is insignificant in the equation (8).  
Therefore, ν ′  in the above equations can be substituted by u′ .  

Thus, the set of equations for perturbations of the velocity u′  and the concentrations ic′  in the 
vertical channel becomes as follows:  

 

)( 22112

2

ccg
x
u

t
u

z ′+′+
∂

′∂
=

∂
′∂ ββ

ρ
η , 

2
2

2

122
1

2

11
102

x
cD

x
cD

z
cu

t
с

∂
′∂

+
∂

′∂
=

∂
∂′+

∂
′∂ ∗∗ ,                       (10) 

2
2

2

222
1

2

21
202

x
cD

x
cD

z
cu

t
c

∂
′∂

+
∂

′∂
=

∂
∂′+

∂
′∂ ∗∗ , 

0=
∂
′∂

z
u . 

 
Let us solve the set of equation (10). Taking the characteristic dimension of the problem to be 

equal to the channel radius r and rendering (10) dimensionless, we have (omitting the primes):  
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To determine the criticality conditions for the oscillating instability, the solution of the set of 

equations (11) is sought in the form  
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where n=1,3,5,… stands for characteristic odd modes of perturbations, and λ  is the perturbation 
time decrement. The boundary conditions assume that the velocity perturbations and the flow of 
matter on the walls of the channel become zero:  
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Substituting (12) into the set of equations (11) and excluding sequentially the amplitudes of 

the concentrations and the velocity subsequently, we obtain a cubic equation with respect to λ . 
This expression determines characteristic roots for any n depending on the Rayleigh and Prandtl 
numbers, the concentration gradients in the following form:  
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Depending on the values of p, q, r, and s, the equation (13) gives either three real roots 

(monotonic perturbations) or one real and two complex conjugate roots (the latter describe 
oscillatory perturbations). If the decrement of the cubic equation (13) has a nonzero imaginary part 
( )ωλλ ir += , the perturbation terms oscillate at a frequency equal to the imaginary part of the 
decrement ω ; attenuation (rise) of the perturbations is determined by the sign of rλ . The loss of 
stability of the gas mixture means that the decrements λ  of some characteristic perturbations at a 
certain number ∗R  (or numbers ∗nR ) reverse sign. The perturbations start growing at ∗> RR , while 
they are decaying at ∗< RR . Vanishing of the decrement λ  determines the condition that the 
perturbation is "neutral" meaning that it neither rises nor decays. This condition characterizes the 
boundary of the equilibrium stability with respect to a given perturbation.  

Setting 0=rλ  for determination of the stability boundaries, the equation (13) can be rewritten 
in the form of the following expressions:  
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The latter equations determine the critical conditions for the Rayleigh partial numbers and the 

perturbation frequency ω  at the boundary of oscillating stability. Equating the brackets in (15) to 
zero, from (14) and (15) it is possible to deduce an equation for the oscillating instability line:  
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The frequency of neutral oscillations is defined by the formula  
 

( ) [ ]

( )112222

221
2

1
1111112

1

2
112112

4

2

1

1
2

1

τ

τττττττπ

ω
−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−⎥⎦

⎤
⎢⎣
⎡ +

==
PP

R
A
AR

A
An

q
s ,                (17) 

 
in which the Rayleigh numbers R1 and R2 satisfy the condition (16). It should be noted that the 
straight line defined by (16) has the meaning of a neutral line for oscillatory perturbations only in 
the 02 >ω -section.  

Figure 3 shows the mutual positions of the oscillating (KK) and monotonic (MM) stability 
lines for the (N2–0.333He+0.667Ar)-system studied experimentally (cf  figure 1). The points 
standing for the experimental data were calculated assuming a nonlinear distribution of the 
concentration along the length of the finite-size diffusion channel:  
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Fig. 3. Stability lines for the (N2–0.333He+0.667Ar)-system. The points correspond to the pressure values of 

(1) 0.584, (2) 1.074, (3) 2.06, (4) 2.55, (5) 3.04, (6) 3.53, and (7) 3.92 MPa, respectively 
 

It is seen from figure 3 that the experimental points corresponding to the diffusion lie below 
the lines of the monotonic and oscillating stabilities. The points corresponding to the convective 
mass transfer are located above the line К1К1, but below the line MM. This is an indication that this 
system has an oscillating instability of the mechanical equilibrium. A comparison of the oscillating 
instability line calculated for a flat vertical layer (К2К2) [12] shown in figure 3 and the line 
calculated for the ‘mass-impermeable’ cylindrical channel (К1К1) on the basis of the proposed 
model shows that the "diffusion−convection" transition boundary are in a better agreement with the 
experimental data. 

In summary, we have shown that an oscillating instability in a gravity field appears in the 
three-component mixture when the pure component is at the top and the binary mixture is on the 
bottom of the diffusion channel. Secondly, if the length of the diffusion cylindrical channel is finite 
and the concentration is nonlinearly distributed along the channel our results reflect properly the 
experimental conditions. Finally, the position of the line of the oscillating instability calculated for a 
‘mass-impermeable’ cylindrical channel agrees well with the earlier measurements. This agreement 
is much better than that for the simplest case of a two-dimensional infinite vertical layer. 
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ШЕКТЕЛГЕН ЦИЛИНДРЛІК КАНАЛДАҒЫ ТЕРБЕЛМЕЛІ ОРНЫҚСЫЗДЫҚ 

 
И.В. Поярков  

 
Ең аз əсер əдісін қолдана отырып шектелген диффузиялық каналда изотермдік 

үшкомпоненттік орнықты араласудың есебі шешілді. Шектелген масса өткізбейтін цилиндрлік канал 
мен жазық шексіз қабаттар үшін тербелмелі орнықтылық сызығына салыстырмалы талдаулар 
жасалды. Екіколбалық əдіс арқылы N2 – 0.333He + 0.667Ar жүйесіне жүргізілген теориялық 
есептеулер нəтижелері эксперимент мəндерімен жақсы сəйкес келеді. 

 
 

КОЛЕБАТЕЛЬНАЯ НЕУСТОЙЧИВОСТЬ В ОГРАНИЧЕННОМ ЦИЛИНДРИЧЕСКОМ 
КАНАЛЕ  

 
И.В. Поярков 

 
Методом малого параметра решена задача об устойчивости процесса смешения в тройной 

изотермической смеси для ограниченного диффузионного канала. Дано сравнение положение линии 
колебательной устойчивости для плоского слоя и массонепроницаемого цилиндрического канала 
конечных размеров. Теоретические результаты исследования сопоставлены с опытными данными, 
полученными двухколбовым методом для системы N2 – 0,333He + 0,667Ar.  

 


