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In the present work we analyze the g-essence model for the particular Lagrangian:
L=R+ Z[an "4y —V(l/7, l//)] The g-essence models were proposed recently as an alternative and as a

generalization to the scalar k-essence. We have presented the 3 types solutions of the g-essence model. We
reconstructed the corresponding potentials and the dynamics of the scalar and fermionic fields according the
evolution of the scale factor. The obtained results show that the g-essence model can describes the deceler-
ated and accelerated expansion phases of the universe.

During last years theories described by the action with the non-canonical kinetic terms, k-
essence, attracted a considerable interest. Such theories were first studied in the context of k-
inflation [3], and then the k-essence models were suggested as dynamical dark energy for solving
the cosmic coincidence problem [4]-[6].

In the recent years several approaches were made to explain the accelerated expansion by
choosing fermionic fields as the gravitational sources of energy (see e.g. refs. [9]-[29]). In particu-
lar, it was shown that the fermionic field plays very important role in: i) isotropization of initially
anisotropic spacetime; ii) formation of singularity free cosmological solutions; iii) explaining
latetime acceleration. Quite recently, the fermionic counterpart of the scalar k-essence was pre-
sented in [12] and called for short f-essence. A dark energy model, so-called g-essence, has been
proposed in [12] which is the more general essence model. In the present work, we construct the

some cosmological solutions of the g-essence for the Lagrangian: L =R +2[aX "ty —V(1/7 , 1//)]

The formulation of the gravity-fermionic theory has been discussed in detail elsewhere [30]-[33].,
so we will only present the result here.
Let us consider the M34 - model. It has the following action [12]

S = [d*xy-g[R+2K(X.Y, 4.y, )], (1)
where K is some function of its arguments, ¢ is a scalar function, y = (;//1,1//2,%,1//4 )T is a fer-
mionic function and 7 = *y° is its adjoint function. Here

X =0,59“°V ¢V ¢, Y =05i[pT*D,y - (D7 r*y| )
are the canonical kinetic terms for the scalar and fermionic fields, respectively. V  ,and D, are the

covariant derivatives. The model (1) admits important two reductions: k-essence and f-essence (see
below). In this sense, it is the more general essence model and in [12] it was called g-essence.
The variation of the action (1) with respect to g, gives us the following energy-momentum

tensor for the g-essence fields:
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where K, =0K/oX, K, =0K/aY, u,, = Vﬂ¢/\/2X etc. The equation of motion for the scalar
field ¢ is obtained by variation of the action (1) with respect to ¢,

—ﬁ%:(KXgW K VAV BN V9 +2XK (K, (4)

Varying the action (1) with respect to g, we get the Einstein equations
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where R, is the Ricci tensor. Similarly, from the Euler-Lagrange equations applied to the Lagran-

=R, —-05Rg, -T, =0, (5)

gian density K we can obtain the Dirac equations for the fermionic field y and its adjoint ¥ cou-

pled to the gravitational and scalar fields.

With the general formalism described above, we are now interested to investigate cosmology.
We now consider the dynamics of the homogeneous, isotropic and flat FRW universe filled with g-
essence. In this case, the background line element reads

ds’=dt’ —a(dx2 +dy? +dzz) (6)
and the vierbein is chosen to be
(e;’ ): diag(l,1/a,1/a,1/a), (ej): diag(l, a, a, a). (7)
In the case of the FRW metric (6), the equations corresponding to the action (1) look like [12]
3H? - p=0, (8)
2H +3H?*+p=0, 9)
Ko +(Ky +3HK, K, =0, (10)
K,y +0,5(3HK, +K, b —iy°K, =0, (11)
K, +0,53HK, +K, J7 —iK,7° =0, (12)
p+3H(p+p)=0, (13)
where the kinetic terms, the energy density and the pressure take the form
X =056, Y =05i(7y "y —r'y) (14)
and
p=2K, X+K,Y-K, p=K. (15)
Note that the equations of the M4 - model (8)-(13) can be rewritten as
3H* - p=0, (16)
2H +3H’ +p=0, (17)
('K, 4) —a’K, =0, (18)
(a3Kv‘/’jz)t_2iKv7(70‘//)j =0, (19)
@K,y ) +2iK, [7°), =0, (20)
p+3H(p+p)=0. 1)
Finally we present the following useful formula
Ky Y = 05K, (77"y — 77w ) = ~0.5(K, p + K;7) (22)
and the equation for U =y :
[infua’k, )fu ==ik;' (7 'K, K, »"w) (23)

Let us consider the purely kinetic case of the Ms4 - model that is when K = K(X,Y). In this
case, the system (8)-(13) becomes

3H* - p=0, (24)
2H +3H? +p=0, (25)
a’K,g-0=0, (26)
a’Kyyi-¢, =0, (27)
a’Kyy®—¢; =0, (28)
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p+3H(p+p)=0, (29)
where O'(g) is the real (complex) constant. Hence we immediately get the solutions of the Klein-
Gordon and Dirac equations, respectively, as

dt Sj
= . . = . 30
| IR S (30)
Also the following useful formula takes place
0,50° o
X="— or K, = ) 31
a6 K>2< X a3 2 X ( )

It is interesting to note that for the purely kinetic g-essence the solutions of the Klein-Gordon and
Dirac equations are related by the formula

=057y (32)
Let us conclude this section as: for the purely kinetic case K = K(X,Y) from (22) follows that
Y =0 so that in fact we have K =K(X,Y)=K(X,0)=K(X). So we will go further, having

passed by this case.
Let us now we consider the following particular case of the M34 - model (1):

K:K1:K1(x>¢) (33)
that corresponds to k-essence. Then the system (8)-(13) takes the form of the equations of k-essence
(see e.g. [3]-[6])

3H —p, =0, (34)
2H +3H? +p, =0, (35)
Kixd+(Kx +3HK, K, =0, (36)
P +3H(p +p)=0, (37)
where the energy density and the pressure are given by

P =2K X =K, p=K,. (38)

As is well-known, the energy-momentum tensor for the k-essence field has the
Tyv = vay¢vv¢ - gva = 2K, Xul,uulv - Kgyv = (pk+ P« )ulyulv — P9, - (39)
It is interesting to note that in the case of the FRW metric (6), purely kinetic k-essence and

S
F(T) - gravity (modified teleparallel gravity) are eqivalent to each other, if a =¢€ 2 [7]-[8].
Now we consider the following reduction of the Ms4 - model (1):
K=K, =K, (Y.p.7) (40)
that corresponds to the M33 - model that is the f-essence [12]. The energy-momentum tensor for
the f-essence field has the form

2 &8 .
TIV E——=0’5IK l7l_‘ DVW_D tﬂvl// _g VK=

y’ ﬁ 59/,‘, Y[ (e =v) (4 ) ] H (41)

= KYYul,uulv - Kg,uv = (pf+pf l,uulv - pf g,uv

For the FRW metric (6), the equations of the f-essence become [12]

3H? - p, =0, (42)
2H +3H?*+p, =0, (43)
Koy +0,53HK,, + K,y by —iy°K,, =0, (44)
Ky +0,53HK,, + K, J7 —iK,,7* =0, (45)

88



pi+3H(p +p,)=0,
where
pr =KyY =K, py =K,
Let us we present some solution of the g-essence (1). To do it, we consider the case
K=K(X,Y,p,7)=aX"+&Y -V(y,i7).
Then the system (8)-(13) takes the form
3H? - p, =0,
2H +3H? +p, =0,
¢+[BH +(n-1)In X ) Jp=0,
l/)+1,5Hl//+i€_1}/OVV7 =0,
v +1L5Hy —ie™V,y’ =0,
Py +3H(pf + pf):Oa
where
p=al2n-1)X"+V, p=aX"+e& -V,
It has the following solution

2 2n-1
Y =2 H4on —2— ,
[2n2a2a6j

5 o 2n-1
V =3H?-(2n 1)a£2n2a2a6j :
K=-2H-3H".
Now we would like to present some explicit solutions. Consider examples.
1) As the second example we consider the solution
a=a,sinh"[ft].
In this case, we have
C

H=mpeothlt] H =mpsinh [l u=—imrry

and

2
o
X = 2n-]|
2n*a’al sinh ™ [pt]
n

2
(o}

Y = 2¢7'| mpB? sinh?[ft]+ an -
2n*a*ad sinh*" [ At] ’

V :3 2 n2 h2 _ 2 _1 (2
K =-2mp? sinh [ t] - 3m* g coth® [ A].

So finally we get the followinge solutions of the g-essence:
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(47)

(48)

(49)
(50)
(1)
(52)
(53)
(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)



a=a,sinh"[At], (66)

22(2n—1) 2 dt
¢ =mint—— (Z I 3m J (67)
ne'a )
C -iD
= 1=1,2), 68
4 a(l)ssinhl’sm[ﬁt]e ( ’ ) (68)
S e (k=3,4) (69)

V= a)’ sinh™" [ t]
and the following expression for the potential

2952 2o2u? et
V =3m2g 1430 &% | _g(an—1) £ |7, 70
ﬂ( c? J ( 2na’c? (70)
Here
268, .
D=- 0 || mB? sinh®™? +on| ———— sinh 21 dt 71
2] A sinh ™ Al an S (] (1)

and c; obey the condition (70). The expressions for the equation of state and deceleration parame-

ters take the form

_ .2 ) __m—1+tanh2[,6‘t]
w=-1 3mtanh [ﬁt], g= o . (72)

These formulas tell us that this solution can describes the accelerated and decelerated expansion
phases of the universe.
i1) Finally, we consider the following solution for the scale factor:

a=ae” (B =const). (73)
In this case, we have
. C
H=p, H=0, u=—— (74)
ga e’
and
02
X = 2n-] W N (75)
§ o’ 2n-1
Y ==2¢ IW(W ) (76)
0
o’ 2n-1
V =34>-(2n —1)0{— : (77)
2n’a’ale®”
K=-35". (78)
So finally we get the following solutions of the g-essence:
a=a.e”, (79)
22(2n—1) 2 (I—an%t
¢ = 2n(2n-1 o 5 (80)
n‘a’al 3B
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-l 3,
| 260n* o? e
2 2,6

3¢ | 2n“a’a;
CI
y=—— e 1=1,2), (81)
| aé’sel’sﬂ[ ( )
2ean’ o? me%
35 | 2n%a%a
Ck
V= o © (k=3,4) (82)
0

and the following expression for the potential

(83)

n
glolu? |-t
2na’c’

Vv =3/32—a(2n—1)(

As is well-known that in this case the equation of state and deceleration parameters are:
w=-1, q=-1. (84)
In this work we studied the g-essence model for the particular Lagrangian:
L=R+ Z[aX "+eY —-V(, 1//)] which involves the scalar and fermionic fields. The g-essence mod-

els were proposed recently as an alternative and as a generalization to scalar k-essence. We have
presented the 3 types solutions of the g-essence model. We reconstructed the corresponding poten-
tials and the dynamics of the scalar and fermionic fields according the evolution of the scale factor.
We calculated the equation of state and deceleration parameters for the presented solutions. The ob-
tained results tell us that the model can describes the decelerated and accelerated expansion phases
of the universe.

We want, however, to conclude with more conservative viewpoint that further work is needed
to understand whether g-essence can be relevant in realistic cosmology indeed.
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G-39CCEHUMAJAH YAETUIT'EH 9JIEM

®@.b. beaucaposa, K.K. Ep:xanos, ILIO pbi6a, 1. Mbip3akyia, U.W. Kyina3apos
byn xymeictra L = R+2[aX" +&Y —V(l/7 ,W)] JarpaHKuaH Typi YIOIH @-3CCEHIUS MO
3eprreneni. COHFBl JKBULAAPHI g-3CCEHLMSI MOJAENICPl K-3CCEHUMSHBIH JKANMbIIaHFaH TYPl JKOHE COHBIH
ANbTEPHATUBACHI PETiHJE YCHIHBUIIBL. Z-3CCEHLUS MOJENiHIH 3 Typii memrimi xepceTinreH. CKalspIibiK
KoHE (epMUOHMBIK OpICTEepIiH ColiKec NMOTCHIHAINaphl MEH IUHAMHKACHl KaliTa OHIENreH. AJIBIHFaH
HOTIDKENEP, Z-3CCEHIMs MOCIIHIH OJIEMHIH YIeMeli KEHEIOIH XoHe TeXeaaipy (azamapbiH TyciHaipe
QJIATBIHIBIFBl KOPCETINIeH.

YCKOPAIOIWIAACS BCEJIEHHAS U3 G-OCCEHIIUU

®.b. Beaucaposa, K.K. Epxkanos, I1.IO Lp10a, III. Meip3akya, U.U. Kyasna3apos
B paboTe uccieayercs MoAenb g-3CCeHIuHu s narpamkuana Buga L =R +2|aX" + &Y -V (g/7 , l//)]
Mojenu g-3CCeHIMU ObUTH MPEIOKEHBI B MOCIICHEE BPEMsI B KAUECTBE aJIbTePHATHBBI U KaKk 0000IICHHE K-
acceHnuu. [IpeacraBineHo 3 Tuma pemieHWd MOJIETH g-3CCEHIHNHA. BOCCTaHOBIEHBI COOTBETCTBYIOIIHME IIO-
TEHITNAJBl ¥ JWHAMUKA CKaJSIPHBIX U (PEPMUOHHBIX IOJIEH B COOTBETCTBUH C DBOJIOIHENH MacmTaOHOTO (hak-
topa. [lonydeHHbIe pe3ybTaThl MOKA3bIBAIOT, YTO MOJICIb Z-3CCCHIIMH MOMKET OMUCHIBATH (ha3bl TOPMOXKE-
HUS ¥ YCKOPEHHOI'0 paciiupeHus BeeneHHo.
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