ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

ВИРТУАЛЬНЫЙ КАНАЛ РАСПАДА 7 Li \rightarrow^5 He+d

Н.В. Афанасьева, Н.А. Буркова, К.А. Жаксыбекова, А.А. Уразалин

Казахский национальный университет им. аль-Фараби, НИИЭТФ, г.Алматы

Представлены результаты исследования канала виртуального распада ${}^{7}\text{Li} \rightarrow {}^{5}\text{He+d}$ в потенциальной кластерной модели. Построены функции ядра ${}^{5}\text{He}$ в αn - и dt -моделях как в координатном, так и импульсном представлениях.

Особенность канала⁷ Li \rightarrow ⁵ He+d состоит в том, что ядро-остаток ⁵ He относится к классу так называемых экзотических ядер. В двухчастичном представлении его можно описывать двумя конфигурациями ⁵ He{ α n} и ⁵ He{dt}, которые ортогональны друг другу.

Для ядра ⁷Li используется двухкластерная αt -модель, которая была многократно и всесторонне апробирована [1, 2]. Таким образом, очевидно, что для построения радиальных волновых функций относительного движения в канале ⁵He+d происходит перестройка виртуального α -частичного кластера. Для построения таких функций необходимо, в первую очередь, исследовать все возможные координатные преобразования, соответствующие перестройке исходной кластерной функции в конечный канал.

Далее в численных расчетах мы используем данные работ [1-4].

Волновые функции в представлении ⁵ He {*an*}

Для построения радиальных волновых функций относительного движения в канале 5 He+d методом проектирования необходимо знать явный вид ВФ ядра 5 He. Далее представлены данные по этому ядру в микроскопических МРГ и ТИМО представлениях, а также кластерная ВФ.

Координатная волновая функция ⁵ He $\{\alpha n\}$ в МРГ расчетах имеет вид [3]:

$$R(r) = N \cdot r \left[\exp\left(-\frac{2}{5}\eta \,\alpha r^2\right) + c \exp\left(-\frac{2}{5}\xi \,\alpha r^2\right) \right],\tag{1}$$

где $\alpha = 0,514 \text{ фм}^{-2} \eta = 0,20, \xi = 0,84, c = 0,344, \vec{r} = \vec{R}_{\alpha} - \vec{r}_n, N = 0,052342$ – нормировочный коэффициент.

В импульсном представлении функция (1) будет иметь вид:

$$a(\vec{q}) = \frac{N \cdot q \sqrt{\pi}}{8} \left[\frac{\exp\left(-\frac{5q^2}{8\eta\alpha}\right)}{\left(2/5\eta\alpha\right)^{5/2}} + c \frac{\exp\left(-\frac{5q^2}{8\xi\alpha}\right)}{\left(2/5\xi\alpha\right)^{5/2}} \right].$$
 (2)

Координатная волновая функция ⁵He $\{\alpha n\}$ осцилляторного вида:

$$R_{1p}(r) = N_{1p}r \exp\left(-r^2/2r_0^2\right),$$
(3)

где нормировка $N_{1p} = -\frac{2\sqrt{6}}{3\sqrt[4]{\pi} \cdot r_0^{5/2}}, \ \vec{r} = \vec{R}_{\alpha} - \vec{r}_n, \ r_0$ – осцилляторный параметр.

Соответствующее импульсное представление функции (3) имеет вид:

$$a_{1p}(\vec{q}) = q \sqrt{\frac{\pi}{2}} N_{1p} r_0^5 \exp\left(-q^2 r_0^2 / 2\right).$$
(4)

Результаты расчетов волновых функций МРГ и ТИМО в импульсном представлении приведены на рисунке 1.

1 — волновая функция в МРГ расчетах; 2 — осцилляторная ВФ при значении осцилляторного параметра $r_0=1,6$ фм; 3 — осцилляторная ВФ при значении осцилляторного параметра $r_0=1,5$ фм.

Рис. 1. Импульсное представление координатных волновых функций 5 He $\{\alpha n\}$

Для построения кластерной ВФ необходимо решить уравнение Шредингера в α + n канале рассеяния для *p*-волны и далее аппроксимировать эту функцию в удобном для аналитических расчетов виде, разложив её по гауссовскому базису.

Далее используем следующие данные по массам соответствующих фрагментов, а также феноменологические потенциалы работы [1].

Итак, уточненные массы ядер (согласно <u>http://www-nds.iaea.org/amdc/masstables/Ame2003/mass.mas03</u>): 1 а.е.м. = 931,494028(23) МэВ, нейтрон п (939,5654 МэВ), дейтрон d (1876,123), тритий t (2809,4316), альфа-частица ⁴He (3728,4007) и ⁷Li (6535,3656).

Массу ядра ⁵Не можно найти из следующего условия:

$$m_{7_{\rm Li}} - m_{5_{\rm He}} - m_{\rm d} = Q_m = -9,522$$
 M3B.

Тогда масса ядра ⁵Не:

$$m_{\rm 5_{He}} = 4668,7646 \text{ M} \Rightarrow \text{B}$$

Энергию связи ядра ⁵Не в канале α +п или, другими словами, энергию, необходимую для того, чтобы разбить ядро ⁵Не на α -частицу и нейтрон, можно определить следующим образом:

$$\varepsilon_{cs^{5}\mathrm{He}\{\alpha+n\}} = \varepsilon_{cs^{5}\mathrm{He}} - \varepsilon_{cs\alpha} = m_{\alpha}c^{2} + m_{n}c^{2} - m_{s}_{\mathrm{He}}c^{2}.$$

Таким образом, подставляя в это выражение массы α -частицы, нейтрона и ядра ⁵He, получаем:

$$\varepsilon_{c\sigma^5 \operatorname{He}\{\alpha+n\}} = -0,7985 \text{ M}\ni \text{B}.$$

Аналогично рассчитывается энергия связи ядра ⁵Не в канале d+t:

$$\varepsilon_{cs^{5}He\{d+t\}} = m_{d}c^{2} + m_{t}c^{2} - m_{5}He^{2} = 16,79 \text{ M}\Im\text{B}.$$

Полученные численные значения энергии связи ядра ⁵Не в каналах α+n и d+t находятся в хорошем согласии с данными работы [3]:

$$\varepsilon_{cs^{5}He\{a+n\}} = -0,798 \text{ M}\Im B,$$

 $\varepsilon_{cs^{5}He\{d+t\}} = 16,792 \text{ M}\Im B.$

Аппроксимированная координатная волновая функция рассеяния в канале α + n имеет вид:

$$R_{3/2}^{(-)}(qr) = \frac{U_{3/2}(qr)}{qr} = r \sum_{i} C_{i} \exp\left(-\beta_{i}r^{2}\right).$$
(5)

Таблица 1. Коэффициенты C_i и β_i для волновой функции (5)

Ν	<i>l</i> =1	
Π/Π	eta_i , фм $^{-2}$	C_i , фм ^{-5/2}
1	0.617642474D-04	0.432409257D-01
2	0.973884318D-03	-0.977892955D-01
3	0.357404244D-02	0.409866382D-01
4	0.858562524D-02	0.807129352D-01
5	0.168849326D-01	0.534876978D-01
6	0.296661874D-01	0.116867715D+00
7	0.486583985D-01	0.163464982D+00
8	0.764720026D-01	0.308152606D+00
9	0.117200900D+00	0.502018862D+00
10	0.177532475D+00	0.924155622D+00
11	0.268920968D+00	0.105378254D+01
12	0.412147958D+00	0.557109496D+00
13	0.647735664D+00	0.374469371D-01
14	0.106241426D+01	0.688409520D-02
15	0.186662168D+01	-0.516668384D-02
16	0.367099445D+01	0.379043685D-02
17	0.881852567D+01	-0.280033689D-02
18	0.323629719D+02	0.975907365D-02
19	0.510292305D+03	0.426586095D+00

График функции (5) представлен на рисунке 2.

$$\tilde{R}_{3/2}^{(-)}(qr) = \frac{U_{3/2}(qr)}{r} = R_{3/2}^{(-)}(qr) \cdot q , \qquad (6)$$

где q = 0,20031 фм⁻¹.

График функции (6) представлен на рисунке 3.

1 — волновая функция рассеяния в канале α + n; 2 — осцилляторная ВФ при значении осцилляторного параметра r_0 =1,5 фм; 3 - осцилляторная ВФ при значении осцилляторного параметра r_0 =1,6 фм.

Рис. 2. Координатные волновые функции

1 — волновая функция рассеяния в канале α + n; 2 — осцилляторная ВФ при значении осцилляторного параметра r_0 =1,5 фм; 3 - осцилляторная ВФ при значении осцилляторного параметра r_0 =1,6 фм.

Волновые функции в представлении ⁵ He {dt}

Аппроксимированная координатная волновая функция 5 He $\{dt\}$ (по данным Дубовиченко С.Б.) имеет вид:

$$R_1(\vec{r}) = r \sum_i C_i \exp\left(-\alpha_i r^2\right) , \qquad (7)$$

где $\vec{r} = \vec{R}_d - \vec{R}_t$ – относительная координата.

Ν	l=1	
п/п	Нормировочный коэффициент N=1	
	α_i, ϕ м ⁻²	C_i , фм $^{-5/2}$
1	0.129098150D-02	-0.893314620D-07
2	0.105565460D-01	0.655526061D-06
3	0.286660414D-01	0.506625683D-05
4	0.567551357D-01	0.111246704D-02
5	0.972037974D-01	0.126133600D-01
6	0.154117177D+00	0.572350985D-01
7	0.234406448D+00	0.167457231D+00
8	0.35000009D+00	0.255934670D+00
9	0.522596575D+00	0.111941790D+00
10	0.794849802D+00	-0.226826970D-02
11	0.126023893D+01	-0.720125588D-03
12	0.215839519D+01	-0.251996690D-02
13	0.427334964D+01	-0.112733263D-02
14	0.116041772D+02	-0.159748322D-02
15	0.948891206D+02	-0.106149931D-02

Таблица 2. Коэффициенты C_i и α_i для волновой функции (7)

В импульсном представлении функция (7) имеет вид:

$$a_{1}(\vec{q}) = \frac{q\sqrt{\pi}}{8} \sum_{i} \frac{C_{i}}{\alpha_{i}^{5/2}} \cdot \exp\left(-\frac{q^{2}}{4\alpha_{i}}\right).$$
(8)
$$\underbrace{\underbrace{0}}_{g^{-}}^{0} = \underbrace{10^{-1}}_{10^{-2}} \underbrace{10^{-2}}_{0,0^{-2},0^{-2},5^{-2},0^{-2},5^{-3},0^{-2},0^{-2},5^{-3},0^{-2},0^{-2},5^{-3},0^{-2},0^{-2},5^{-3},0^{-2},0^{-2},5^{-3},0^{-2},0^{$$

Рис. 4. Импульсное представление аппроксимированной координатной волновой функции (7)

Полученные данные – промежуточные для дальнейших расчетов спроектированных радиальных ВФ в канале 7 Li \rightarrow ⁵ He+d, а также фотоядерных характеристик этого процесса.

Литература

1. Дубовиченко С.Б. Свойства легких атомных ядер в потенциальной кластерной модели. Алматы, 2004. 247 с.

2. Burkova N.A., Zhaksybekova K.A., Zhusupov M.A. One-nucleon spectroscopy of light nuclei // Phys. of Part. and Nucl. 2009. V. 40, No. 2. P. 162-205.

3. Tilley D.R., Cheves C.M. et al. Energy levels of Light Nuclei A=5// Nucl. Phys. A. 2002. V. 708. P. 1-225.

4. Junghans G., Bangert K. et al. The Photodisintegration of ⁶Li and ⁷Li // Z. Physik A. 1979. V. 291. P. 353-365.

7 Li \rightarrow ⁵ He+d ыдыраудың виртуалдық каналы

Н.В. Афанасьева, Н.А. Буркова, К.А. Жақсыбекова, А.А. Уразалин

Потенциалдық кластерлік моделіндегі ⁷ Li \rightarrow ⁵ He+d ыдыраудың виртуалдық каналының зерттеу нәтижелері көрсетілген. ⁵Не ядросының αn - және dt -модельдеріндегі координаттық, сондай-ақ, импульстік көріністегі функциялары құрылды.

THE 7 Li \rightarrow ⁵ He+d VIRTUAL DISINTEGRATION CHANNEL

N.V. Afanasyeva, N.A. Burkova, K.A. Zhaksybekova, A.A. Urazalin

The results of research of the ⁷Li \rightarrow ⁵ He+d virtual disintegration channel in potential cluster model are presented. The ⁵He wave functions in αn - and dt-models are constructed in the coordinate and momentum representations.