Тhe production of porous gallium phosphide films and the investigation of physical properties

  • S.S. Sarsembek Al-Farabi Kazakh National University, Kazakstan, Almaty
  • G.K. Mussabek Al-Farabi Kazakh National University; Institute of Information and Computational Technologies, Kazakstan, Almaty
  • K.К. Dikhanbaev Al-Farabi Kazakh National University, Kazakstan, Almaty
  • D. Ermukhamed Al-Farabi Kazakh National University, Kazakstan, Almaty
  • Sh.B. Baiganatova Al-Farabi Kazakh National University, Kazakstan, Almaty
  • G.A. Amirkhanova Institute of Information and Computational Technologies, Almaty, Kazakhstan


Among a wide class of semiconductor materials, AIIIBV compounds are widely used in the production of efficient electronic and photonic devices. It is known that for materials used in modern semiconductor electronics, nanoscale materials are considered to be the most relevant and nanostructured porous materials are particularly noteworthy. Recently, the interest of researchers and developers of new light-emitting structures and instruments is attracted by porous gallium phosphide, the crystal modification of which is used in the production of various predominantly green light-emitting devices. Obtaining of homogeneous and stable nanoporous structures of gallium phosphide is one of the most difficult technological problems, for the solution of which many different methods have been proposed. Among proposed methods, the electrochemical etching method proved to be the most effective to achieve positive results. Present paper is devoted to the survey of obtaining of porous gallium layers by means of electrochemical etching and of basic scientific and technical achievements in the field of research and application of its physical properties. The article describes the general technology for the production of porous gallium phosphide by electrochemical etching, discusses the technological features of controlling the etching process, discusses the influence of technological conditions for obtaining physical properties of the resulting material, and gives examples of the application of the material.


1 M. Treideris, I. Simkiene, A. Selskis, Z. Balevicius and G.J. Babonas, Acta Physica Polonica 119, 131-134 (2011).

2 Y.C. Shen, M.H. Hon, I.C. Leu and L.G. Teoh, Applied Physics 98, 429-434 (2010).

3 M. Treideris, I. Simkiene, I. Kasalynas, A. Selskis and G.J. Babonas, Lithuanian Journal of Physics 51, 341 – 344 (2011).

4 R. Sutherland, Handbook on Nonlinear Optics, (Marcel Dekker, New York, 2013), 685 p.

5 V.P. Ulin and S.G. Konnikov, Fizika i tekhnika poluprovodnikov 7, 854-866 (2007). (in Russ).

6 R.W. Tjerkstra, Electrochem and solid-state letters 9, 81-84 (2006).

7 V.A. Mel'nikov, L.A. Golovan, S.O. Konorov, D.A. Muzychenko, A.B. Fedotov, A.M. Zheltikov, V.Yu. Timoshenko and P.K. Kashkarov, Appl. Phys 79, 225–228 (2004). A.V. Zoteyev, P.K. Kashkarov, A.N. Obraztsov and V.Yu. Timoshenko, Fizika i tekhnika poluprovodnikov 8, 1473-1478 (1996). (in Russ).

8 K. Tomioka and S. Adachia, Journal of Applied Physics 98, 1-7 (2005).

9 T.N. Zavaritskaya, V.A. Karavanskiy and A.V. Kvit, Fizika i tekhnika poluprovodnikov 2, 235-240 (1998). (in Russ).

10 Ch. Zhu, M. Zheng, Z. Xiong, H. Li and W. Shen, International journal of hydrogen energy 39, 10861-10869 (2014).

11 M.A. Stevens-Kalceff, I.M. Tiginyanu, S. Langa, H. Föll and H.L. Hartnagel, Journal of Applied Physics 89, 2559-2565 (2001).

12 I.M. Tiginyanu, I.V. Kravetsky, S. Langa, G. Marowsky, J. Monecke and H. Föll, Applied Research 194, 549–555 (2003).

13 A.I. Belogorokhov, V.A. Karavanskii, A.N. Obraztsov and V.Yu. Timoshenko, Pisma v ZHETF 60, 274-278 (1994). (in Russ).

14 L.A. Golovan, V.A. Mel’nikov, S.O. Konorov, A.B. Fedotov, S.A. Gavrilov, A.M. Zheltikov, P.K. Kashkarov, V.Yu. Timoshenko, G.I. Petrov, L.Li and V.V. Yakovlev, Pisma v ZHETF 78, 229-233 (2003). (in Russ).

15 R.W. Tjerkstra, J.R. Gómez, D.A.M. Vanmaekelbergh and J.J. Kelly, Electrochemical and solid-state letters 5, 32 - 35 (2002).

16 A. Standing, S. Assali, G. Lu, M.A. Verheijen, and Y. Cui, Nature communications 6, 1-7 (2015).

17 D.A. Bussian, S.A. Crooker, M. Yin, M. Brynda, Al.L. Efros, and V.I. Klimov, Nature Mater. 8, 35-40 (2009).

18 N.P. Dasgupta and P.Yang, Front. Phys. 9, 289-302,(2014).

19 S.I. Radautsan, Yu.I. Maksimov, V.V. Negreskul and S.L. Pyshkin, Fosfid galliya (Kishinev: AN MSSR. In-t prikl. Fiziki, 1969), 123 p. (in Russ).

20 M. Matthew, C.H. Aaron and E.B. Paul, Applied Physics Letters 104, 1-5 (2014).

21 S. Singh and P. Srivastava, Applied Nanoscience 3, 89–94 (2013).

22 J.W. Marvin, Handbook of optical materials, (CRC Press, California, 2003), 499 p.

23 J.M. Hwang, W.H. Hung and H.L. Hwang, IEEE Photonics Technology Letters 20, 608-610 (2008).

24 I. Tiginyanu, E. Monaico, V. Sergentu, A. Tiron and V. Ursakia, ESC Journal of Solid State Science and Technology 4, 57-62 (2015).
How to Cite
SARSEMBEK, S.S. et al. Тhe production of porous gallium phosphide films and the investigation of physical properties. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 67, n. 4, p. 64-76, oct. 2018. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/1084>. Date accessed: 16 jan. 2021.
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.