Thickness of the surface layer of porous silicon

  • V.M. Yurov E.A. Buketov Karaganda State University, Kazakhstan, Karaganda

Abstract

Semiconductor materials with nanoscale structural elements are promising materials for modern electronics. Due to this structure, porous silicon exhibits unique physicochemical properties that single crystal silicon does not possess. The literature describes two methods for producing layers of porous silicon. This is chemical staining etching without applying an external electric field and anodic electrochemical etching of a silicon wafer in an external electric field. In this paper, we discuss the problem of the surface layer of porous silicon. A layer of thickness h = d is called a d(I) layer, and a layer at h≈10d is called a d(II) layer of atomically smooth silicon. At h≈10d, the dimensional dependence of the physical properties of the material begins to appear, and such a structure is called a nanostructure. At h = d, a phase transition occurs in the surface layer. It is accompanied by sharp changes in physical properties, for example, the direct Hall-Petch effect is reversed. The analysis of the work describing the properties of porous silicon, single-crystal silicon is carried out.
It has been shown that, starting from 80% porosity, silicon, by its properties of the d(II)Si layer, extends beyond the Glater nanostructure. For most pure metals, the thickness of the surface layer d(I) does not exceed 3 nm (for d(II) ~ 30 nm).

References

1 B.A. Uhlir, Bell Labs Technical Journal, 35 (2), 333-347 (1955).

2 S. Zangooie, R. Jansson, and H.Arwin, Applied Surface Science, 136, 123-130 (1998).

3 R.E. Hummel and S. Chang Appl. Phys. Lett., 61 (16), 1965-1967 (1992).

4 Z. Mouffak, Microelectronic Engineering, 43-44, 655 – 659 (1998).

5 K.H. Jung, S. Shin, D.L. Kwongб J. Electrochem. Soc., 140 (10), 3046-3064 (1993).

6 F. Ronkel, J.W. Schultze, J of Porous Materials, 7, 11-16 (2000).

7 I.I. Reshına, E.G. Gýk, FTP, 27 (5), 728-735 (1993). (in Russ).

8 J. Oh, H.-C. Yuan, and H.M. Branz, Nature Nanotechnology, 7, 743-748 (2012).

9 Y. Wang, Y.P. Liu, T. Lai, and H.L. Liang, RSC Advances, 3, 15483-15489 (2013).

10 P. Repo, J. Benick, V. Vahanissi, J. Schon et al, Energy Procedia. Energy Procedia, 38, 866-871 (2013).

11 F. Toor, H.M. Branz, M.R. Page, K.M. Jones et al, Applied Physics Letters, 99, 103501 (2011).

12 X. Ao, X. Tong, D.S. Kim, L. Zhang et al, Applied Physics Letters, 101, 111901 (2012).

13 E. Pastor, E. Matveeva, V. Parkhutik, J. Curiel-Esparza et al, Physica Status Solidi C, 4 (6), 2136-2140 (2007).

14 S.P. Low, N.H. Voelcker, L.T. Canham, K.A. Williams, Biomaterials, 30, 2873-2880 (2009).

15 L. Velleman, C.J. Shearer, A.V. Ellis, D. Losic et al, Nanoscale, 2, 1756-1761 (2010).

16 S.P. Zımın, Elektrofızıka porıstogo kremnııa ı strýktýr na ego osnove, Dısser. doktora fız.-mat. naýk, Iaroslavl, 2003. – 305 s. (in Russ).

17 L.A. Golovan, Vlııanıe strýktýrnyh harakterıstık porıstyh polýprovodnıkov ı dıelektrıkov na ıh optıcheskıe svoıstva. – Dısser. doktora fız.-mat. naýk, Moskva, 2008, 251 s. (in Russ).

18 N.E. Demıdova, Transport toka, EPR ı fotolıýmınestsentsııa v porıstom kremnıı. – Avtoref. kandıdata fız.-mat. naýk, Nıjnıı Novgorod, 2010, 19 s. (in Russ).

19 I.L. Martynov, Mehanızmy obrazovanııa ıonov nıtroaromatıcheskıh molekýl v gazovoı faze ı na poverhnostı porıstogo kremnııa prı ÝF-lazernom vozdeıstvıı. – Avtoref. kandıdata fız.-mat. naýk, Moskva, 2011, 22 s. (in Russ).

20 E.A. Gosteva, Gradıentno-porıstye strýktýry kremnııa s grafenopodobnymı sloıamı. – Dısser. kandıdata fız.-mat., Moskva, 2018, 130 s. (in Russ).

21 G.K. Musabek, Formırovanıe ı optıcheskıe svoıstva sloev ı mnogosloınyh strýktýr na osnove nanokrıstallov kremnııa. Dısser. doktora fılosofıı (PhD) v oblastı fızıkı. Respýblıka Kazahstan, Almaty, 2013, 143 s. (in Russ).

22 G.S. Asanov, Dınamıcheskıı haos v nanostrýktýrırovannyh avtokolebatelnyh sıstemah. - Dısser. doktora fılosofıı (PhD) v oblastı radıotehnıkı, elektronıkı ı telekommýnıkatsıı, Respýblıka Kazahstan, Almaty, 2014, 108 s. (in Russ).

23 Z.J. Janabaev, G.S. Asanov, M.K. Ibraımov, E. Sagıdolda Generator haotıcheskıh sıgnalov na nanorazmernoı plenke ız porıstogo kremnııa, Innovatsıonnyı patent KZ 23594, 15.12.2010. Opýblıkovan 15.12.2015, bıýl. №12, 4 s. (in Russ).

24 R.M. Aıtmambetov, K.K. Dıhanbaev, E.T. Taýrbaev, Rec.Contr.Phys., 2 (22), 101-109 (2006). (in Russ).

25 Y.Т. Taurbayev, V.Yu. Timoshenko, N.Е. Maslova, et al, Rec.Contr.Phys., 4, 67-72 (2009) (in Russ).

26 K.B. Tynyshtykbaev, Iý.A. Rıabıkın, et al, Vestnık Almatınskogo ınstıtýta energetıkı ı svıazı, 1(8), 36-40 (2010).
(in Russ).

27 K.B., Tynyshtykbaev Iý.A. Rıabıkın, et al, Izvestııa VÝZov. Materıaly elektronnoı tehnıkı, 4, 40-44 (2012). (in Russ).

28 J.E. Sartova, S. Azat, Z.A. Mansýrov, R.L.D. Whitby, Hımıcheskıı jýrnal Kazahstana, 3(59), 49-65 (2017). (in Russ).

29 V.Yu. Timoshenko, K.A. Gonchar, et al, Int. Journal of Nanoscience, 9 (2), 1-5 (2010).

30 V.M. Iýrov, S.A. Gýchenko, and V.Ch. Laýrınas, Fızıko-hımıcheskıe aspekty ızýchenııa klasterov, nanostrýktýr ı nanomaterıalov, 10, 691-699 (2018). (in Russ).

31 V.M. Iýrov, V.Ch. Laýrınas, S.A. Gýchenko, Nano- ı mıkrosıstemnaıa tehnıka, 6, 347-352 (2019). (in Russ).

32 K.Iý. Arýtıýnov, DAN VSh RAN, 3 (28), 7-16 (2015). (in Russ).

33 K. Oýra, V.G. Lıfshıts, A.A. Saranın, A.V. Zotov, M. Kataıama, Vvedenıe v fızıký poverhnostı, (Moscow, Naýka, 2006), 490 s. (in Russ).

34 N.F. Ývarov, V.V. Boldyrev, Ýspehı hımıı, 70 (4), 307-329 (2001). (in Russ).

35 A.I. Gýsev, A.A. Rempel, Nanokrıstallıcheskıe materıaly, (Moscow, Fızmatlıt, 2000), 224 s. (in Russ).

36 L.A. Balagýrov, V.F. Pavlov, E.A. Petrova, G.P. Boronına, FTP, 31 (8), 957-960 (1997). (in Russ).

37 H. Gleiter, Acta mater, 48, 1-29 (2000).

38 G. Korotcenkov, Porous Silicon: From Formation to Application: Formation and Properties, Vol. 1, (CRC Press, 2015), 423 p.

39 V. Lehmann and S. Ronnebeck, Journal of The Electrochemical Society, 146 (8), 2968-2975 (1999).

40 P. Allongue, et al, Applied Physics Letters, 67, 941-943 (1995).

41 A.G. Cullis, et al, Applied Physics Reviews, 82, 909-965 (1997).

42 V.V. Tregýlov, Porıstyı kremnıı: tehnologııa, svoıstva, prımenenıe, (Rıazan, Rıaz. gos. ýn-t ım. S.A. Esenına, 2011), 124 s. (in Russ).

43 T.Iý. Belık, Nanomaterıaly ı nanotehnologıı, 4, 65-66 (2012).
Published
2020-03-27
How to Cite
YUROV, V.M.. Thickness of the surface layer of porous silicon. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 72, n. 1, p. 60-66, mar. 2020. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/1231>. Date accessed: 03 june 2020. doi: https://doi.org/10.26577/RCRh.2020.v72.i1.07.
Section
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.