An Analytical Evaluation of Semiconductor Resistance Changes in Weak Magnetic Fields
DOI:
https://doi.org/10.26577/RCPh2025954Keywords:
Magnetic field;, semiconductors;, resistivity;, Fermi-Dirac distribution functions, chemical potential, chemical potentialAbstract
Variations in electrical resistance under the influence of magnetic fields play a crucial role in numerous technological applications, including hard disk drives and microcircuit sensors. In this study, the change in the electrical resistance of a semiconductor exposed to a weak magnetic field is examined within a generalized theoretical framework. The analysis is carried out by formulating the system using single-parameter Fermi–Dirac distribution functions. For all calculations, an analytical expression for these functions, proposed by one of the authors, is employed. A comparison between the analytical results and those obtained through numerical methods demonstrates a high degree of agreement, confirming the reliability and accuracy of the proposed formulation. The analytically derived results are presented in tabular form to enhance clarity and facilitate direct comparison.
References
References
A.B. Pippard, Magnetoresistance in Metals, Cambridge Press, Cambridge, 1989.
B.M. Askerov, Kinetic effects in semiconductor (Russian), Leningrad, 1970.
B.M. Askerov, Electron transport in semiconductor, Word Scientific, Singapore, 1985.
W. Jones, H.N. Norman, Theoretical Solid State Physics, Dover, 1985.
J.M. Ziman, Electrons and phonons: The theory of transport phenomena in solids, Clarendon Press, Oxford, 1960.
O.S. Gryazanov, Tables for the calculation of kinetic coefficients in semiconductors, Nauka, Leningrad, 1971.
F. J. Blatt, Theory of Mobility of Electrons in Solids, Solid State Physics, Solid State Physics, 4, 199–366 (1957).
R. Saffert, J. Schapawalow, G. Landwehr, E. Gmelin, Nernst-Ettingshausen and Seebeck Effect of Pure and Electron-Irradiated Tellurium at Low Temperatures, Phys. Stat. Sol. B, 61, 509–519 (1974).
X. Liu, X.C. Xie, Spin Nernst effect in the absence of a magnetic field, Solid State Commun. 150, 471–474 (2010).
V. V. Shchennikov, S. V. Ovsyannikov, Thermoelectric power, magnetoresistance of lead chalcogenides in the region of phase transitions under pressure, Solid State Commun. 126, 373–378 (2003).
P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys., 306, 566-613 (1900).
U. I. Erkaboev, R. G. Rakhimov, J. I. Mirzaev, N. A. Sayidov, The influence of external factors on quantum magnetic effects in electronic semiconductor structures. International Journal of Innovative Technology and Exploring Engineering, 9(5), 1557-1563 (2020).
R. W. Series, D.T.J. Hurle, The use of magnetic fields in semiconductor crystal growth. Journal of Crystal Growth, 113(1-2), 305-328 (1991).
C. Frank‐Rotsch, N. Dropka, F. M. Kießling, P. Rudolph, Semiconductor crystal growth under the influence of magnetic fields. Crystal Research and Technology, 55(2), 1900115 (2020).
P. A. Bobbert, T. D. Nguyen, F.W.A. Van Oost, V.B. Koopmans, M. Wohlgenannt, Bipolaron mechanism for organic magnetoresistance. Physical Review Letters, 99(21), 216801 (2007).
W. Wagemans, P. Janssen, A.J. Schellekens, F. L. Bloom, P.A. Bobbert, B. Koopmans, The many faces of organic magnetoresistance. In Spin (Vol. 1, No. 01, pp. 93-108). World Scientific Publishing Company (2011).
U. Niedermeier, M. Vieth, R. Pätzold, W. Sarfert, H. Von Seggern, Enhancement of organic magnetoresistance by electrical conditioning. Applied Physics Letters, 92(19), 193309 (2008)..
V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, A. J. Epstein, Anomalous room temperature magnetoresistance in organic semiconductors. Synthetic Metals, 156(9-10), 757-761 (2006).
F. L.Bloom, W. Wagemans, B. Koopmans, Temperature dependent sign change of the organic magnetoresistance effect. Journal of Applied Physics, 103(7), 07F320 (2008)..
J. Ren, Y Zhang, S. Xie, Charge current polarization and magnetoresistance in ferromagnetic/organic semiconductor/ferromagnetic devices. Organic Electronics, 9(6), 1017-1021 (2008).
I.I. Guseinov, B.A. Mamedov, Unified treatment for accurate and fast evaluation of the Fermi Dirac functions, Chin. Phys. B, 19, 050501 (2010).
I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, 4th ed., Academic Press, New York, 1980.
I. I. Guseinov, B. A. Mamedov, M. Kara, M. Orbay, On the computation of molecular auxiliary functions A n and B n. Pramana Journal of Physics56, 691-696 (2001).
I. I. Guseinov, B. A. Mamedov, Use of analytical relations in evaluation of exponential integral functions. Journal of Mathematical Chemistry, 38, 311-314 (2005).











