Method for preparing a complex metal-oxide/silicon photocathode integrated with lanthanide upconversion nanoparticles at the interface

Authors

DOI:

https://doi.org/10.26577/RCPh2025953
        46 8

Keywords:

metal oxide/silicon heterostructures, lanthanide up-conversion, photoelectrochemical water splitting, hydrogen energy

Abstract

This study presents the fabrication of an integrated silicon photocathode based on a metal-oxide/silicon heterostructure. A SnO₂ thin film was deposited on the front surface of a p-n⁺-Si substrate via magnetron sputtering to enable UV photon absorption and corrosion protection. Lanthanide up-conversion nanoparticles (Ln-UCNPs, NaYF₄:Er³⁺@PbS) were integrated at the rear interface using spin-coating to convert near-infrared (NIR, 1550 nm) photons into visible light, achieving broad-spectrum absorption. SEM analysis confirmed the granular morphology of the SnO₂ layer (~140 nm thick) and the p-n⁺ junction depth (~0.6 µm). Current-voltage (I-V) measurements revealed enhanced tunneling charge transport and a Schottky barrier. Spectral response analysis demonstrated improved photosensitivity across 400–1100 nm, peaking at 870–900 nm. Photoelectrochemical (PEC) tests showed that Ln-UCNPs integration increased photocurrent density by ~5 times, significantly enhancing water splitting efficiency. This integrated structure offers a promising approach to improving the stability and spectral efficiency of Si-based photoelectrodes.

Author Biographies

К., Al-Farabi Kazakh National University, Almaty, Kazakhstan

Associate Professor, Department of Electronics and Astrophysics, Faculty of Physics and Technology, Al-Farabi Kazakh National University. Almaty, Kazakhstan, e-mail: dksolar2017@gmail.com

А. Rahimbekova, Аstana National Laboraotry, Nazarbayev University, Аstana, Kazakhstan

Master, Researcher, Astana National Laboratory, Nazarbayev University. Astana, Kazakhstan, e-mail: assel.rakymbekova@nu.edu.kz

М. , Аstana National Laboraotry, Nazarbayev University, Аstana, Kazakhstan

Master, Researcher, Astana National Laboratory, Nazarbayev University. Astana, Kazakhstan, e-mail: magzhan.amze@nu.edu.kz

А. , Аstana National Laboraotry, Nazarbayev University, Аstana, Kazakhstan

Master, Researcher, Astana National Laboratory, Nazarbayev University. Astana, Kazakhstan, e-mail: adiya.yersin@nu.edu.kz

C. Batay, Аstana IT University, Аstana, Kazakhstan

PhD, Senior Lecturer, Department of Intelligent Systems and Cybersecurity, Astana IT University. Astana, Kazakhstan, e-mail: b.sagidolla@astanait.edu.kz

Е. Shabdan, Аstana National Laboraotry, Nazarbayev University, Аstana, Kazakhstan; Аstana IT University, Аstana, Kazakhstan

corresponding author, PhD, Senior Researcher, Astana National Laboratory, Nazarbayev University, Associate Professor, Department of Intelligent Systems and Cybersecurity, Astana IT University. Astana, e-mail: yerkin.shabdan@nu.edu.kz

References

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326.

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/B800489G.

Ronglei Fan, Zetian Mi, Mingrong Shen. Silicon based photoelectrodes for photoelectrochemical water splitting. Optics Express. 27, 4, A51-A80 (2019). https://doi.org/10.1364/OE.27.000A51.

Shuyang Peng, Di Liu, Zhiqin Ying,Keyu An,Chunfa Liu, Jinxian Feng,Haoyun Bai, Kin Ho Lo, Hui Pan. Industrial-Si-based photoanode for highly efficient and stable water splitting. Journal of Colloid and Interface Science. 671, 2024, 434-440. https://doi.org/10.1016/j.jcis.2024.05.185.

S. Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, S. Jin, D. Wang, Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy 2013, 2, 351. https://doi.org/10.1016/j.nanoen.2012.10.010.

Yanhao Yu, Zheng Zhang, Xin Yin, Alexander Kvit, Qingliang Liao, Zhuo Kang, Xiaoqin Yan, Yue Zhang & Xudong Wang. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat Energy 2, 17045 (2017). https://doi.org/10.1038/nenergy.2017.45.

R. van de Krol, Y. Liang, An n-Si/n-Fe2O3HeterojunctionTandemPhotoanodefor SolarWater Splitting. CHIMIA Int. J. Chem. 2013, 67, 168. https://doi.org/10.2533/chimia.2013.168.

Yerkin Shabdan, Aiymkul Markhabayeva, Nurlan Bakranov, Nurxat Nuraje. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting. Nanomaterials 2020, 10(9), 1871; https://doi.org/10.3390/nano10091871.

Zahra Hajiahmadi, Yavar T. Azar. Computational study of h-WO3 surfaces as a semiconductor in water-splitting application. Surfaces and Interfaces 28 (2022) 101695. https://doi.org/10.1016/j.surfin.2021.101695.

Yihui Zhao, Geert Brocks, Han Genuit, Reinoud Lavrijsen, Marcel A. Verheijen,and Anja Bieberle-Hütter. Boosting the Performance of WO3/n-Si Heterostructuresfor Photoelectrochemical Water Splitting: from the Roleof Si to Interface Engineering. Adv. Energy Mater. 2019, 9, 1900940. https://doi.org/10.1002/aenm.201900940.

Y. Zhao, S. Balasubramanyam, R. Sinha, R. Lavrijsen, M. A. Verheijen, A. A. Bol, A. Bieberle-Hütter, Physical and Chemical Defects in WO3 Thin Films and Their Impact on Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2018, 1, 5887. DOI: 10.1021/acsaem.8b00849.

Hanan K. Hassun, Bushra H. Hussein, Ebtisam M.T. Salman, Auday H. Shaban. Photoelectric properties of SnO2: Ag/P–Si heterojunction photodetector. Energy Reports 6 (2020) 46–54. https://doi.org/10.1016/j.egyr.2019.10.017.

Joseph Day, S. Senthilarasu, Tapas K. Mallick. Improving spectral modification for applications in solar cells: A review. Renewable Energy 132 (2019) 186e205. https://doi.org/10.1016/j.renene.2018.07.101.

Yerkin Shabdan , Chang-Keun Lim, Almaz Beisenbayev, Adiya Yersin, Nurxat Nuraje. PbS Quantum Dots and Er³⁺ in Core-Shell Nanocrystals for NIR-to-Visible Upconversion. 4th International Symposium on Emerging Materials and Devices. NLA, Nazarbayev Univesity. Astana, Kazakhstan. May 28-30, 2025.

Xiaoning Ru, Miao Yang, Shi Yin, Yichun Wang, Chengjian Hong, Fuguo Peng, Yunlai Yuan, Chang Sun, Chaowei Xue, Minghao Qu, Jianbo Wang, Junxiong Lu, Liang Fang, Hao Deng, Tian Xie, Shengzhong (Frank) Liu, Zhenguo Li, Xixiang Xu. Silicon heterojunction solar cells achieving 26.6% efficiency on commercial-size p-type silicon wafer. Joule 8, 1092–1104, April 17, 2024. DOI: 10.1016/j.joule.2024.01.015.

Almaz Beisenbayev, Mina Guli, Santeri Neuvonen and Erkin Shabdan. Synthesis of PbS Quantum Dot-Sensitized Er³⁺-Activated Core-Shell Nanocrystals for Enhanced Photon Upconversion. ACS Omega, 2025(submited).

How to Cite

К., Rahimbekova А. ., М., А., Batay, C. ., & Shabdan, E. (2025). Method for preparing a complex metal-oxide/silicon photocathode integrated with lanthanide upconversion nanoparticles at the interface. Recent Contributions to Physics, 4(95), 27–34. https://doi.org/10.26577/RCPh2025953

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience