The investigation of short-lived radionuclides for diagnosis of oncological diseases on the basis of practice in KazNRI of oncology and radiology

  • M.E. Abishev Al Farabi Kazakh National University, Kazakstan, Almaty
  • F.S. Nurshayeva Al Farabi Kazakh National University, Kazakstan, Almaty

Abstract

In the work on the criteria for selecting a radionuclide, short-lived radionuclides for PET, SPECT and for modern diagnostic methods for PET / CT and SPECT / CT were chosen. For each diagnostic method, radioisotopes, the type of decay, types of radiation, nuclear reactions, and decay energies were determined. For SPECT, calculations were carried out for the practical output of 99mTc from the generator during the lifetime from 20.10 to 3.11.2016 (15 days) in comparison with the theoretical (calculated) radioactivity. The volume and doses of the eluate preliminarily diluted with saline for the study of certain organs and systems were calculated. And for PET, short-lived radionuclides such as 11C, 13N, 15O, 18F, 82Rb were considered. Comparison of practical results with theoretical calculations is carried out. Some radiological parameters of radionuclides, widely used in radionuclide diagnostics, were also determined. They are presented in the main part of the article. Radionuclide diagnostics, thanks to its high efficiency, has become an indispensable part of clinical practice in developed countries. The use of such radiopharmaceuticals makes it possible to diagnose various diseases at early stages. To solve this problem and overcome dependence on imports, the Institute of Nuclear Physics of the NNC RK has been developing technologies for obtaining the most important medical isotopes and radiopharmaceuticals, such as sodium pertechnetate 99mTc, sodium iodide 131I, sodium o-iodophipate 131I, thallium chloride 201T1 and others . In the work, calculations of the decay energy were carried out and methods for registering the emissions were considered.

References

1. Викман Я.З. Комплексная радионуклидная диагностика отдаленных метастазов рака щитовидной железы: Дис. канд. мед. наук. - Вильнюс, 1989. - 119с.
2. Габуния Р.И., Кузьмин В.П., Фатеева М.Н. и соавт. Применение радиоактивных нуклидов в клинических исследованиях. — М.: Атомиздат, 2000. – 263с.
3. Глейзер Ю.Я., Даваян Э.А. Радиоизотопная диагностика опухолей скелета // Мед. радиология. – 1971. - №1. - С.79-85.
4. Cynthia C. Chernecky and Barbara J. Berger. Laboratory Tests and Diagnostic Procedures. – Elsevier, St. Louis, 2012. – 1222 p.
5. Wernick M. and Arsvold J. Emission tomography: the fundamentals of PET and SPECT. – Elsevier: Academic Press, 2004.
6. Schneebaum S., Even-Sapir E. and Cohen M. Clinical applications of gamma-detection probes—radioguided surgery // Eur. J. Nucl. Med. – 1999. – Vol. 26(1). –Р.26-35.
7. Zinnhardt B., Pigeon H., Theze B., Viel T., Wachsmuth L., Fricke I.B., et al. Combined PET imaging of the inflammatory tumor microenvironment identifies margins of unique radiotracer uptake. // Cancer Res. – 2017. – Vol.77. – P.1831–41.
8. Berdnikova A.K., Dubinin F.A., Kantserov V.A., Orlov A.D., Pereyma D.U., Shmurak S.Z. and Zhukov K.I. Miniature gamma detector based on inorganic scintillator and SiPM // J. Phys.: Conf. Ser. 2016. – Vol. 675. - P.675 042047.
9. Berdnikova A.K., Bolozdynya A.I., Kantserov V.A., Kondakov A.K., Pashkovich I. and Znamenskiy I.A. A method for lateral localization of a compact gamma source in radionuclide diagnostics // J. of Physics: Conf. Series. – 2016. – Vol.798. - N. 1. – P.675 042048.
10. Bucerius J., Ahmadzadehfar H. and Biersack H. 99mTc-Sestamibi Clinical applications. Germany: Springer; 2011. ISBN: 978-3-642-04232-4.
11. Fan Z., Calsolaro V., Atkinson R.A., Femminella G.D., Waldman A., Buckley C., et al. Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein // J Nucl Med. – 2016. - P.57:1753-11.
12. Feeney C., Scott G., Raffel J., Roberts S., Coello C., Jolly A., et al. Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain // Eur J Nucl Med Mol Imaging. – 2016. - P.43:2201-12.
13. Boutin H., Murray K., Pradillo J., Maroy R., Smigova A., Gerhard A., et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-RPK11195 in a preclinical model of stroke // Eur J Nucl Med Mol Imaging. – 2015. – P.42:503-13.
14. Sridharan S., Lepelletier F.X., Trigg W., Banister S., Reekie T., Kassiou M., et al. Comparative evaluation of three TSPO PET radiotracers in a LPS-induced model of mild neuroinflammation in rats. // Mol Imaging Biol. – 2017. – P.1977–89.
15. James M.L., Belichenko N.P., Shuhendler A.J., Hoehne A., Andrews L.E., Condon C., et al. [18F]GE-180 PET detects reduced microglia activation after LM11A-31 therapy in a mouse model of Alzheimer’s disease // Theranostics. – 2017. - P.7: 1422–36.
16. Winkeler A., Boisgard R., Awde A.R., Dubois A., Theze B., Zheng J., et al. The translocator protein ligand [18F]DPA-714 images glioma and activated microglia in vivo // Eur J Nucl Med Mol Imaging. – 2012. – P.39: 811–23.
17. Buck J.R., McKinley E.T., Fu A., Abel T.W., Thompson R.C., Chambless L., et al. Preclinical TSPO ligand PET to visualize human glioma xenotransplants: a preliminary study // PLoS One. – 2015. – 10:e0141659.
18. Su Z., Roncaroli F., Durrenberger P.F., Coope D.J., Karabatsou K., Hinz R., et al. The 18-kDa mitochondrial translocator protein in human gliomas: an 11C-(R)PK11195 PET imaging and neuropathology study // J Nucl Med. – 2015 – P. 56:512–7.
19. Langen K.J., Galldiks N., Hattingen E., Shah N.J. Advances in neurooncology imaging // Nat Rev Neurol. – 2017. – P.13:279–89.
20. Jensen P., Feng .L, Law I., Svarer C., Knudsen G.M., Mikkelsen J.D., et al. TSPO imaging in glioblastoma multiforme: a direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging // J Nucl Med. – 2015. – P.56: 1386–90.

References
1. Ya.Z. Wikman, Complex radionuclide diagnostics of distant metastases of a thyroid gland cancer: Dis. kand. med. sciences. - Vilnius, 119 s. (1989). (in russ).
2. R.I. Gabunia, V.P. Kuzmin, M.N. Fateeva, et al. The use of radioactive nuclides in clinical studies. (Moscow: Atomizdat, 2000), 263 p. (in russ).
3. Yu.Ya. Glazer and E.A. Davyan, Med. Radiology, 1, 79-85, (1971). (in russ).
4. C. Cynthia Chernecky and J. Berger Barbara. Laboratory Tests and Diagnostic Procedures (Elsevier, St. Louis, 2012), 1222 p.
5. M. Wernick and J Arsvold Emission tomography: the fundamentals of PET and SPECT (Elsevier: Academic Press, 2004).
6. S. Schneebaum, E. Even-Sapir and M. Cohen, Eur. J. Nucl. Med., 26 (1), 26-35, (1999).
7. B. Zinnhardt, H. Pigeon, B. Theze, T. Viel, L. Wachsmuth, I.B. Fricke, et al, Cancer Res. 77, 1831–41, (2017).
8. A.K. Berdnikova, F.A. Dubinin, V.A. Kantserov, A.D. Orlov, D.U. Pereyma, S.Z. Shmurak, and K.I. Zhukov, J. Phys.: Conf. Ser. 675, 675 042047, (2016).
9. A.K. Berdnikova, A.I. Bolozdynya, V.A. Kantserov, A.K. Kondakov, I. Pashkovich, and I.A. Znamenskiy, Journal of Physics: Conference Series. 798, 1, 675 042048, (2016).
10. J. Bucerius, H. Ahmadzadehfar, and H. Biersack 99mTc-Sestamibi Clinical applications. (Germany: Springer; 2011). ISBN: 978-3-642-04232-4.
11. Z. Fan, V. Calsolaro, R.A. Atkinson, G.D. Femminella, A. Waldman, C. Buckley, et al. J Nucl Med. 57, 1753-11, (2016).
12. C. Feeney, G. Scott, J. Raffel, S. Roberts, C. Coello, A. Jolly, et al. Eur J Nucl Med Mol Imaging, 43, 2201-12, (2016).
13. H. Boutin, K. Murray, J. Pradillo, R. Maroy, A. Smigova, A. Gerhard, et al. Eur J Nucl Med Mol Imaging, 42, 503-13, (2015).
14. S. Sridharan, F.X. Lepelletier, W. Trigg, S. Banister, T. Reekie, M. Kassiou, et al. Mol Imaging Biol. 1977–89, (2017).
15. M.L. James, N.P. Belichenko, A.J. Shuhendler, A. Hoehne, L.E. Andrews, C. Condon, et al. Theranostics, 7, 1422–36, (2017).
16. A. Winkeler, R. Boisgard, A.R. Awde, A. Dubois, B. Theze, J. Zheng, et al. Eur J Nucl Med Mol Imaging, 39, 811–23, (2012).
17. J.R. Buck, E.T. McKinley, A. Fu, T.W. Abel, R.C. Thompson, L. Chambless, et al. PLoS One, 10, 0141659, (2015).
18. Z. Su, F. Roncaroli, P.F. Durrenberger, D.J. Coope, K. Karabatsou, R. Hinz, et al. J Nucl Med. 56, 512–7, (2015).
19. K.J. Langen, N. Galldiks, E. Hattingen, N.J. Shah, Nat Rev Neurol., 13, 279–89, (2017).
20. P. Jensen, L. Feng, I. Law, C. Svarer, G.M. Knudsen, J.D. Mikkelsen, et al., J Nucl Med., 56, 1386–90, (2015).
Published
2018-04-03
How to Cite
ABISHEV, M.E.; NURSHAYEVA, F.S.. The investigation of short-lived radionuclides for diagnosis of oncological diseases on the basis of practice in KazNRI of oncology and radiology. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 62, n. 3, p. 67-72, apr. 2018. ISSN 1563-0315. Available at: <http://bph.kaznu.kz/index.php/zhuzhu/article/view/566>. Date accessed: 20 apr. 2018.
Section
Theoretical Physics. Nuclear and Elementary Particle Physics

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.