Динамический структурный фактор неидеальной пылевой плазмы с частицами конечных размеров

Авторы

  • Лаззат Тастанбековна Еримбетова КазНУ им. альФараби
  • Аскар Ербуланович Давлетов КазНУ им.аль-Фараби
  • Юрий Вячеславович Архипов КазНУ им.аль-Фараби
  • Игор Михайлович Ткаченко Гурски Валенсийский политехнический университет

DOI:

https://doi.org/10.26577/rcph-2019-i2-11
        101 58

Аннотация

The aim of the study is to determine the effect the finite size of dust particles has on the static and dynamic characteristics of the dust component of a plasma. A model expression, obtained from the linear density-response theory with the plasma dielectric function in the random phase approximation, is used as an interaction potential between dust particles. The static structure factor of dust particles is evaluated from the reference hypernetted-chain approximation, which inherently contains the hard sphere model handled within the Perkus-Yevik closure. The appearance of maxima and minima is found in the curves of the static structural factor, indicating the formation of short- and long-range orders in the arrangement of dust particles. The dynamic structure factor is restored using only its static counterpart based on the self-consistent method of moments, which assumes that the second derivative of the dynamic structure factor with respect to frequency vanishes at the origin. Thus, an analytical expression has been put forward for the dynamic structural factor, which is valid in a wide range of parameters of plasma nonideality and dust packing fractions. At low packing fractions, the dynamic structure factor coincides with the results of molecular dynamics simulations, but with increase of the packing fraction, the maximum of the dynamic structure factor grows and shifts to the left or right in frequency, depending on the wavenumber.

Библиографические ссылки

1 Forsberg M., Brodin G., Marklund M., Shukla P.K. and Moortgat J., Phys. Rev. D 74, 064014, (2006).
2 Malmrose M.P., Marscher A.P., Jorstad S.G., Nikutta R. and Elitzur M., Astrophys. J. 732, 116, (2011).
3 Seok J.Y., Koo B.-C. and Nirasahita H., Astrophys. J. 807, 100, (2015).
4 Kersten H., Deutsch H., Stoffels E., Stoffels W.W., Kroesen G.M.W. and Hippler R., Contrib. Plasma Phys. 41, 598, (2001).
5 Walk R.M., Snyder J.A., Scrinivasan P., Kirch J., Diaz S.O., Blanco F.C., Shashurin A., Keidar M. and Sandler A.D., J. Pediatr. Surg. 48, 67, (2013).
6 Szetzen L., Hsiu-Feng C. and Chien-Ju C., J. Appl. Phys. 101, 113303 (2007).
7 Bacharis M., Coppins M. and Allen J.E., Phys. Plasmas 17, 042505 (2010).
8 Castaldo C., Ratynskaia S., Pericoli V., de Angelis U., Rypdal K., Pieroni L., Giovannozzi E., Maddaluno G., Marmolino C., Rufoloni A., Tuccillo A., Kretschmer M. and Morfill G.E., Nucl. Fusion 47, L5 (2007).
9 Tolias P., Ratynskaia S., De Angeli M., De Temmermen G., Ripamonti D., Riva G., Bykov I., Shalpegin A., Vignitchouk L., Brochard F., Bystrov k., Bardin S. and Litnovsky A., Plasma Phys. Control. Fusion 58, 025009 (2016).
10 Yousefi R., Davis A.B., Carmona-Reyes J., Matthews L.S. and Hyde T.W., Phys. Rev. E. 90, 033101 (2014).
11 Ramazanov T.S., Bastykova N.Kh., Ussenov Y.A., Kodanova S.K., Dzhumagulova K.N. and Dosbolayev M.K., Contrib. Plasma Phys. 52, 110-113, (2012).
12 Erimbetova L.T., Davletov A.E., Kudyshev Zh.A. and Mukhametkarimov Ye.S., Contrib. Plasma Phys. 53, 414-418, (2013).
13 Shahzad A. and He M.-G., Phys. Plasmas 23, 093708 (2016).
14 Nosenko V., Ivlev A.V. and Morfill G.E., Phys. Rev. Lett. 108, 135005 (2012).
15 Magyar P., Donkó Z., Kalman G.J. and Golden K.I., Phys. Rev. E 90, 023102 (2014).
16 Arkhipov Yu.V., Askaruly A., Davletov A.E., Dubovtsev D.Yu., Donkó Z., Hartman P., Korolov I., Conde L. and Tkachenko I.M., Phys. Rev. Lett. 119, 045001 (2017).
17 Khrapak S.A. and Thomas H.M., Phys. Rev. E 91, 033110 (2015).
18 Kundu M., Avinash K., Sen A. and Ganesh R., Phys. Plasmas 21, 103705 (2014).
19 Naumkin V.N., Lipaev A.M., Molotkov V.I., Zhukhovitskii D.I., Usachev A.D. and Thomas H.M., J. Phys.: Conf. Ser. 946, 012144 (2018).
20 Piel A., Block D., Meltzer A., Mulsow M., Schablinski J., Schella A., Wieben F. and Wilms J., Eur. Phys. J. D 72, 80, (2018).
21 Chiang C.-H. and Lin I., Phys. Rev. Lett. 77, 647-650, (1996).
22 Kostadinova E.G., Guyton F., Cameron A., Busse k., Liaw C., Matthews L.S. and Hyde T.W., Contrib. Plasma Phys., 58, 209-216 (2018).
23 Khrapak S.A. and Thomas H.M., Phys. Rev. E 91, 023108 (2015).
24 Marciante M. and Murillo M.S., Phys. Rev. Lett. 118, 025001 (2017).
25 Tolias P., Ratynskaia S. and de Anglis U., Phys. Rev. E 90, 053101 (2014).
26 Rios de Anda I., Statt A., Turci F. and Royall C.P., Contrib. Plasma Phys. 55, 172-179, (2015).
27 Mukhopadhyay A.K. and Goree J., Phys. Rev. Lett. 109, 165003 (2012).
28 Petrov O.F. and Fortov V.E., Contrib. Plasma Phys. 53, 767-777, (2013).
29 Xie B.S. and Yu M.Yu., Phys. Rev. E 62, 8501 (2000).
30 Davletov A.E., Yerimbetova L.T., Arkhipov Yu.V., Mukhametkarimov Ye.S., Kissan and Tkachenko I.M., J. Plasma Phys. 84, 905840410 (2018).
31 Wang Y.-L., Guo X.-Y. and Li Q.-S., Commun. Theor. Phys. 65, 247-253, (2016).
32 Lee M.-J. and Jung Y.-D., Eur. Phys. J. D 72, 33 (2018).
33 Lampe M. and Joyce G., Phys. Plasmas 22, 023704 (2015).
34 Momot A.I., Zagorodny A.G. and Orel I.S., Phys. Rev. E 95, 013212 (2017).
35 Fillippov A.V., Pal’ A.F., Starostin A.N. and Ivanov A.S., JETP. Lett. 83, 546, (2006).
36 Arkhipov Yu.V., Baimbetov F.B. and Davletov A.E., Contrib. Plasma Phys. 43, 258-260, (2003).
37 Baimbetov F.B., Davletov A.E., Kudyshev Zh.A. and Mukhametkarimov E.S.,
Contrib. Plasma Phys. 51, 533-536, (2011).
38 38 Davletov A.E., Arkhipov Yu.V. and Tkachenko I.M., Contrib. Plasma Phys. 56, 308-320, (2016).
39 Lado F., Phys. Rev. A 8, 2548-2552, (1973).
40 Lado F., Mol. Phys. 31, 1117-1127, (1976).
41 Kalman G. and Golden K.I., Phys. Rev. A 41, 5516, (1990).
42 Ott T., Baiko D.A., Kahlert H. and Bonitz M., Phys. Rev. E 87, 043102 (2013).
43 Arkhipov Yu.V., Askaruly A., Ballester D., Davletov A.E., Meirkanova G.M. and Tkachenko I.M., Phys. Rev. E 76, 026403 (2007).
44 Arkhipov Yu.V., Askaruly A., Ballester D., Davletov A.E., Tkachenko I.M. and Zwicknagel G., Phys. Rev. E 81, 026402 (2010).

Загрузки

Как цитировать

Еримбетова, Л. Т., Давлетов, А. Е., Архипов, Ю. В., & Ткаченко Гурски, И. М. (2019). Динамический структурный фактор неидеальной пылевой плазмы с частицами конечных размеров. Вестник. Серия Физическая (ВКФ), 69(2), 78–87. https://doi.org/10.26577/rcph-2019-i2-11

Выпуск

Раздел

Физика плазмы