Effect of three-minute hydrogen plasma treatment on the structure and properties of SnO2 thin films

Authors

  • N.M. Tompakova Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan
  • E.A. Dmitriyeva Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan
  • E.A. Grushevskaya Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan
  • I.A. Lebedev Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan
  • A.S. Serikkanov Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan
  • D.M. Mukhamedshina Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan
  • K.A. Mit’ Satpayev University, Institute of Physics and Technology, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/RCPh-2019-i4-9
        55 31

Keywords:

thin films, tin dioxide SnO2, plasma treatment, hydrogen plasma, film resistance, transmittance coefficient

Abstract

Thin films of tin dioxide were obtained from five-water tin tetrachloride by dissolution in 97% ethanol. The concentration of tin ions in the film-forming solution was 0.12 mol/l, 0.16 mol/l, 0.2 mol/l. The film-forming solution SnCl4/EtOH was applied to the surface of glass substrates by a modified dipping method. Substrates were dried in the air and then annealed at 400°C. Just 4 layers were applied. Hydrogen plasma treatment was carried out at a pressure of 6.5 Pa, power of 20 Watts, oscillation frequency generated by the equipment 27.12 MHz ±0.6%. The decrease of transparency, within the limits of accuracy of measurement of the films obtained from film-forming system with a concentration of tin ions of 0.12 mol/l and 0.2 mol/l were observed. The transparency of the films obtained from film-forming systems with tin ion concentration 0.16 mol/l decreased by 3%. The resistance of the films decreased by 1.5 times. X-ray diffraction analysis showed an increase in the intensity of diffraction peaks from the planes of SnO2 crystallites. An important technical result was obtained: a decrease in the resistance of SnO2 thin films without a significant decrease in transparency, using a film-forming solution with a tin ion concentration of 0.12 mol/l and 0.2 mol/l after treatment for 3 minutes in hydrogen plasma.

References

1 X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, S. Talu, Journal of alloys and compounds 805, 229-236 (2019).

2 S. Javanmardi, S. Nasresfahani, M.H. Sheikhi, Materials research bulletin, 118, N110496 (2019).

3 H.K. Li, D.C. Zhu, Yang Z.Y., Lu W.R., Pu Y., Applied surface science 489, 384-391 (2019).

4 S.Y. Lee, S.H. Cho, Y.S. Cho, S.J. Kim, S.H. Kim, Journal of Nanoscience And Nanotechnology 19(7), 4260-4264 (2019).

5 N. Yilmaz, E.B. Aydin and M.K. Sezginturk, Analytica Chimica Acta. 1062, 68-77 (2019).

6 E. Demir, M. Aydin, A.A. Arie and R. Demir-Cakan, Journal of Alloys And Compounds 788, 1093-1102 (2019).

7 B.E. Park, J. Park, S. Lee, S. Lee, W.H. Kim and H. Kim, Applied Surface Science 480, 472-477 (2019).

8 N. Somjaijaroen, R. Sakdanuphab, N. Chanlek, P. Chirawatkul, A. Sakulkalavek, Vacuum 166, 212-217 (2019).

9 E.P. Stuckert, E.R. Fisher, Sensors and Actuators B-chemical 208, 379-388 (2015).

10 H.B. Seo, B.S. Bae, H.I. Bang, E.J. Yun, Journal of nanoscience and nanotechnology 20, 197-205 (2020).

11 T. Gu, E.T. Hu, S. Guo, Y. Wu, J. Wang, Z.Y. Wang, K.H. Yu, W. Wei, Y.X. Zheng and S.Y. Wang, Vacuum 163 69-74 (2019).

12 D.M. Mukhamedshina, A.I. Fedosimova, E.A. Dmitriyeva, I.A. Lebedev, E.A. Grushevskaya, S.A. Ibraimova, K.A. Mit’ and A.S. Serikkanov, Eurasian Chemico-Technological Journal 21(1), 57-61 (2019).

13 T. Gu, E.T. Hu, S. Guo, Y. Wu, J. Wang, Z.Y. Wang, K.H. Yu, W. Wei, Y.X. Zheng, S.Y. Wang, etc., Vacuum 163, 69-74 (2019).

14 Neeraj K. Mishra, Chaitnaya Kumar, Amit Kumar, Manish Kumar, Pratibha Chaudhary and Rajeev Singh, Materials Science-Poland 33(4), 714-718 (2015).

15 A.N. Jarmonov, D.D. Larionov and R.R. Jahihanov, Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk 17, N2(4) (2015). (in Russ)

16 E.A. Dmitrieva, D.M. Mukhamedshina, N.B. Beisenkhanov and K.A. Mit', Glass Physics and Chemistry 40(1), 31-36 (2014).

17 E.A. Dmitriyeva, D.M. Mukhamedshina, K.A. Mit', I.A. Lebedev, I.I. Girina, A.I. Fedosimova and E.A. Grushevskaja, News of The National Academy of Sciences of The Republic of Kazakhstan-Series of Geology and Technical Sciences 1, 73-79 (2019).

18 V.I. Kondrashin, Engineering sciences. Electronics, measuring equipment and radio engineering 2(38), 93–101 (2016).

19 D.M. Mukhamedshina, N.B. Beisenkhanov, K.A. Mit', V.A. Botvin, I.V. Valitova and E.A. Dmitrieva, High Temperature Material Processes 10(4), 603-615 (2006).

20 D.M. Mukhamedshina, K.A. Mit', N.B. Beisenkhanov, E.A. Dmitriyeva and I.V. Valitova, Journal of Materials Science-Materials in Electronics 19, 382-387 (2008).

21 D.M. Muhamedshina, N.B. Bejsenhanov, K.A. Mit', E.A. Dmitrieva, N.A. Medetov, Perspektivnye materialy N1, 35-42 (2012). (in Russ.)

22 C. Kiliç and A. Zunger, Physical Review Letters 88(9), 1-4 (2002).

23 Ju.A. Rjabikin and I.A. Lebedev, Sposob uvelichenija otnoshenija signal/shum v spektroskopii, Predvaritel'nyj patent N12779, Kazakhstan: MPK G01N 24/00 – 2001. (in Russ)

24 H.B. Seo, B.S. Bae, H.I. Bang, and E.J. Yun, Journal of nanoscience and nanotechnology 20(1), 197-205 (2020).

25 N.B. Bejsenhanov, Physics of the Solid State 53(2), 390–397 (2011). (in Russ)

26 S. Sagadevan, Z.Z. Chowdhury, M.R. Bin Johan, F.A. Aziz, L.S. Roselin, J. Podder, J.A. Lett and R. Selvin, Journal of nanoscience and nanotechnology 19 (11), 7139-7148 (2019).

Downloads

Published

2019-12-21

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)