Нелинейное уравнение кварк-глюонного каскада
Ключевые слова:
кварк, хромодинамика, нелинейная квантовая эволюция, стохастичность, фрактал, само-подобиеАннотация
Исходя из экспериментальных данных по структурным функциям адрона, используя метод сечений Пуанкаре мы вводим нелинейное уравнение кварк-глюонного каскада через рекуррентные соотношения с учётом процессов кварк-глюонных слияний. Введённое дискретное отображение основано на гипотезе само-подобия эволюции кварк-глюонной структуры адрона и оператором эволюции являются распределения кварков и глюонов. Предпологается, что квантовые стохастические флуктуации в сильно коррелированной кварк-глюонной системе описываются так называемой детерминированной хаотической динамикой. Проведён фрактальный анализ возникающих структур (аттракторов), устойчивость которых определяется показателями Ляпунова. Формирование устойчивых структур в нелинейной кварк-глюонной эволюции, по-видимому, связано механизмом адронизации.
Библиографические ссылки
2 YU.L. Dokshitser Vychisleniye strukturnykh funktsiy gluboko neuprugogo rasseyaniya v e+e- annigilyatsii po teorii vozmushcheniy KKHD, ZHETF, 73, 1216, (1977). (in Russ.)
3 G. Altarelli and G.Parisi, Nucl. Phys. B, 126, 298, (1977).
4 E.A. Kuraev and V.S. Fadin, J. Nucl. Phys., 41, 3, (1985).
5 L.N. Lipatov, UFN, 174(4), 337-352, (2004). (in Russ.)
6 A.H. Mueller and J. Qiu, Nucl. Phys B, 268, 427, (1986).
7 M. Devee and J.K. Sarma, Proc Indian Natn. Sci. Acad., 81, 16-21, (2015).
8 C.N. Yang, Int. J. Mod. Phys. A, 30, (2015).
9 R. Feynman and A. Khibbs Kvantovaya mekhanika i integraly po trayektoriyam. – M.: Mir, 1968. (in Russ.)
10 А.Т. Temiraliev, arXiv:1106.4624, (2011).
11 A.T. Temiraliyev, A.K. Danlybayeva, Izvestiya NAN RK seriya fiz-mat. №2, (2014), (in Russ.)
12 M.H. Rasool, M.A. Ahmad, and S. Ahmad, Journal of Modern Physics, 7, 51-64, (2016).