Изучение фазообразования в нанокомпозитах Fe2O3-Nd2O3→NdFeO3/Fe2O3 в результате термического отжига
DOI:
https://doi.org/10.26577/RCPh.2021.v78.i3.05Ключевые слова:
шпинель, Fe2O3-Nd2O3→NdFeO3/Fe2O3, нанокомпозиты, катализаторы, термический отжиг, фазообразованиеАннотация
The aim of this work is systematic study of the thermal annealing effect on the preparation of nanostructured composites NdFeO3/Fe2O3 with a spinel type structure. The interest in these nanocomposites is due to the enormous potential of their application as a basis for magnetic devices, catalysts, and magnetic carriers for targeted drug delivery. As a synthesis method, two-stage synthesis was used, which includes mechanochemical grinding of nanopowders Fe2O3 and Nd2O3 in a planetary mill, followed by thermal annealing of the resulting mixture in a wide temperature range: 600-1000°C. During the studies carried out, it was found that in the initial state the obtained nanocomposites are a mixture of a solid solution of interstitial and substitutional Fe2O3 and Nd2O3. At an annealing temperature of 600°C, the onset of the formation of the NdFeO3 phase is observed, which at a temperature of 1000°C is fully formed and dominates in the composite structure (content more than 85%). It was also found that during thermal sintering, the processes of phase transformations of the Fe2O3-Nd2O3→NdFeO3/Fe2O3 type are accompanied by an increase in the particle size by a factor of 1.5-2.
Библиографические ссылки
2 Y. Ding et al. Journal of applied physics, 93 (10), 7411-7413 (2003).
3 J.E. Wittig, J. Bentley, L.F. Allard, Ultramicroscopy, 176, 218-232 (2017).
4 H.T. Hai, et al., Journal of colloid and interface science, 341 (1), 194-199 (2010).
5 M. Tadic, et al., Acta Materialia, 188, 16-22 (2020).
6 A.V. Anupama, W. Keune, B. Sahoo, Journal of Magnetism and Magnetic Materials, 439, 156-166 (2017).
7 S. Ayyappan et al., Journal of Applied Physics, 109 (8), 084303-084310 (2011).
8 U.S. Khan et al., Materials Science-Poland, 33 (2), 278-285 (2015).
9 S.F. Wang et al., Journal of Magnetism and Magnetic Materials, 419, 464-475 (2016).
10 S. Naghdi, K.Y. Rhee, S.J. Park, JOM, 69 (8), 1415-1421 (2017).
11 Z. Wu et al., International Journal of Minerals, Metallurgy, and Materials, 19 (2), 141-145 (2012).
12 A. Halilu et al., Energy & Fuels, 30 (3), 2216-2226 (2016).
13 H. Abdolmohammad-Zadeh, A. Salimi, Microchimica Acta, 185 (7), 1-8 (2018).
14 A. Halilu et al., Symmetry, 11 (4), 524 (2019).
15 S. Farhadi, Z. Momeni, M. Taherimehr, Journal of alloys and compounds, 471 (1-2), L5-L8 (2009).
16 A. Somvanshi, S. Husain, W. Khan, Journal of Alloys and Compounds, 778, 439-451 (2019).
17 J. Shanker, M.B. Suresh, D.S. Babu, Materials Today: Proceedings, 3 (6), 2091-2100 (2016).
18 M. Vavra et al., Acta Physica Polonica. Series A: General Physics, Physics of Condensed Matter, Optics and Quantum Electronics, Atomic and Molecular Physics, Applied Physics, 131 (4), 869-871 (2017).
19 M. Khorasani-Motlagh et al., International Journal of Nanoscience and Nanotechnology, 9 (1), 7-14 (2013).
20 T.A. Nguyen et al., Nanomaterials, 11 (4), 937-945 (2021).
21 T.A. Nguyen et al. Crystals, 10 (3), 219-225 (2020).
22 M. Dai Luu et al., Advances in Natural Sciences: Nanoscience and Nanotechnology, 7 (2), 025015 (2016).
23 Z. Anajafi et al., Analytical and bioanalytical chemistry, 411 (29), 7681-7688 (2019).
24 S. Chanda et al., Materials Research Bulletin, 48 (4), 1688-1693 (2013).
25 M. Eshraghi, Journal of Superconductivity and Novel Magnetism, 31 (8), 2443-2448 (2018).
26 K.K. Kadyrzhanov et al., Nanomaterials. – 2019. – Vol. 9. – №. 8. – P. 1079.
27 A. Kozlovskiy et al., Molecules, 26 (2), 457 (2021).