Краткий анализ поведения глобальных функций распределения партонов при малом и большом x

Авторы

  • Akbari Jahan Кафедра физики Северо-восточного регионального института науки и технологий, Индия, Аруначал-Прадеш, г. Нирджули http://orcid.org/0000-0001-7601-6904
  • Diptimonta Neog Кафедра физики Северо-восточного регионального института науки и технологий, Индия, Аруначал-Прадеш, г. Нирджули http://orcid.org/0000-0002-8690-0637

DOI:

https://doi.org/10.26577/RCPh.2023.v85.i2.02

Ключевые слова:

функции распределения партонов, структурная функция протона, глубоконеупругое рассеяние, доля импульса x

Аннотация

Parton distribution functions (PDFs) inscribe details about the hadronic substructure in terms of partons, quarks and gluons collectively, which are the fundamental degrees of freedom of Quantum Chromodynamics (QCD), the theory of strong interactions. Study of PDFs has led to a better comprehension of the partonic structure of hadrons and the proton structure function in deep inelastic scattering. Understanding parton densities within the hadrons is vital to estimate the hard-scattering process results. Owing to theoretical and experimental limitations, PDFs cannot be computed from the first principles. The global analysis of parton distribution functions, therefore, requires an unrelenting endeavour.

The aim of the present work is to have a comparative study of the PDFs from the plots obtained using APFEL, which is a PDFs evolution library. We discuss the graphical analyses as well as comparisons of the three global PDFs sets, viz. CT10, MSTW2008 and NNPDF30, in a wide range of momentum fraction x and energy scale Q. A comparative analysis of gluons extracted from these global fits has also been done.

Библиографические ссылки

1 H.L. Lai et al, Phys. Rev. D, 82, 074024 (2010).

2 S. Forte, Acta Phys. Polon. B, 41, 2859-2920 (2010).

3 S. Forte and G. Watt, Ann. Rev. Nucl. Part. Sci., 63, 291-328 (2013).

4 R. Devenish & A. Cooper-Sarkar, Deep Inelastic Scattering, (Oxford: Oxford University Press, 2004), 416 p.

5 A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Eur. Phys. J. C, 63, 189-285 (2009).

6 S. Forte, L. Garrido, J.I. Latorre and A. Piccione, JHEP, 05, 062 (2002).

7 R.D. Ball and et al, Nucl. Phys. B, 838, 136-206 (2010).

8 R.D. Ball and et al, Nucl. Phys. B, 809, 1-63 (2009).

9 R.D. Ball, E.R. Nocera and Juan Rojo, Eur. Phys. J. C, 76 (7), 383 (2016).

10 J. Jacob, Annu. Rev. Nucl. Part. Sci., 70, 43-76 (2020).

11 A. Buckley and et al, Eur. Phys. J. C, 75, 1322015 (2015).

12 Mohammad Moosavi Nejad S., H. Khanpour, S.A. Tehrani, and Mahdi Mahdavi, Phys. Rev. C, 94, 045201 (2016).

13 Jun Gao and P. Nadolsky, JHEP, 07, 035 (2014).

Загрузки

Опубликован

2023-06-14

Выпуск

Раздел

Теоретическая физика. Физика ядра и элементарных частиц. Астрофизика