Коэффициенты преломления, плотность и поляризуемость криовакуумных конденсатов метана

Авторы

  • A.K. Shinbayeva НИИЭТФ, Казахский национальный университет имени аль-Фараби, Казахстан, Алматы
  • A.S. Drobyshev НИИЭТФ, Казахский национальный университет имени аль-Фараби, Казахстан, Алматы
  • M. Ramos Department of Condensed Matter Physics of the Universidad Autonoma de Madrid, Spain
  • D.Yu. Sokolov НИИЭТФ, Казахский национальный университет имени аль-Фараби, Казахстан, Алматы

Ключевые слова:

плотность, коэффициенты преломления, метан

Аннотация

Предлагается обсуждение экспериментальной установки, методики измерения и предварительные результаты исследования зависимости свойств криовакуумных конденсатов метана и от условий их конденсации. Основные параметры экспериментального комплекса характеризуются следующими показателями: температура поверхности конденсации в интервале от Т=12 К до Т=200 К; давление в вакуумной камере от 10-8 Торр до 1000 Торр; толщина криоконденсированных пленок от 0,5 мкм до 100 мкм. Измерения коэффициентов преломления, толщины и плотности криоконденсатов осуществлялись с помощью двухлучевого лазерного интерферометра на длине волны излучения 630 нм. ИК-спектры полученных образцов измерялись с помощью модернизированного спектрометра ИКС-29 в интервале частот от 400 см-1 до 4200 см-1.

Полученные данные по зависимости коэффициентов преломления метана от температуры конденсации позволяют сделать вывод о том, что в окрестностях -перехода при Т=20,4 К данная зависимость  испытывает скачкообразный разрыв.

Библиографические ссылки

1 Clusius K. // Journal of Physical Chemistry. – 1929. – Vol. 3. – P.41.
2 James H.M., Keenan T.A. // Journal of Physical Chemistry. – 1959. - Vol. 31. – P.12
3 Colwell J.H., Gill E.K., J.A. Morrison // Journal of Physical Chemistry. – 1973. – Vol. 39. – P.653.
4 Kruis J.A., Popp L. and Clusius K. Über Umwandlungen in festen Hydriden und Deuteriden // Z. Elektrochem. – 1937. – Vol. 43(8). – P. 664-666.
5 Bartholome E., Drikos G., Eucken A. // Journal of Physical Chemistry B. – 1938. – Vol. 39. – P.371.
6 Prokhvatilov A., Isakina A. Lattice parameters, thermal expansion coefficients and density of vacancies in solid CH4 // Fizika nizkikh temperatur. – 1983. – Vol. 9. - N 4. – P.419-429.
7 Baer D.R., Fraass B.A., Riehl D.H., Simmons R.O. Lattice parameters and thermal expansion of solid CD4 // Journal of Physical Chemistry. – 171978. – Vol. 68. – N4. – P.1411-144.
8 Nijman A. J., Trappeniers N.J. A high pressure NMR study of solid methane: I. The second moment // Physica B. – 1978. – Vol. 95. – P.147-162.
9 Beckman P.A., Bloom M., Ozier I. Proton spin relaxation in dilute methane gas: A symmetrized theory and its experimental verification // Can. Jour. of Phys. – 1976. – Vol. 54, No16. – P.1712-1727.
10 Buchman S., Candela D., Vetterling W., Pound R. Spin-species conversion rate in solid CH4 in the temperature range 4-23 K // Phys. Rev. B – 1982. –Vol. 26. – P.1459.
11 Chapados C., Cabana A. Infrared Spectra and Structures of Solid CH4 and CD4 in Phases I and II // Can. Jour. of Chem. – 1972. – Vol. 50. – P.3521-3533.
12 Miyamoto Y., Fushitani M., Ando D., Momose T. Nuclear spin conversion of methane in solid parahydrogen // J. of Chem. Phys. – 2008. – Vol. 128. – P.114502.
13 Bagatskii M., Mashchenko D., Dudkin V. Phase transitions in solid Kr-CH4 solutions and rotational excitations in phase II // Fizika nizkikh temperatur. – 2007. – Vol.33, No 6/7. – P.728-734.
14 Bagatskii M.I., Manzhelii V.G., Minchina I.Ya, Mashchenko D.A., Gospodarev I.A. Rotational Excitations in Concentrated Solid Kr-CH4Solutions: Calorimetric Studies // Jour. of Low Temp. Phys. – 2003. – Vol. 130, No 5-6. – P.459-475.
15 Pisarska E., Stachwiak P., Jezowski A. Observation of relaxation of molecular spins in CH4 and CD4 crystals in thermal conductivity experiment // Fizika nizkikh temperatur. – 2007. – Vol.33, No 6/7. – P. 768-771.
16 Manzheliiand V.G., Tolkachev A.M. Densities of Ammonia and Methane in the Solid State. // Sov. Phys. Solid State. – 1964. – Vol. 5, No 2506.
17 Martonchik J., Orton G. Optical constants of liquid and solid methane // Applied Optics. – 1994. – Vol. 33(36). – P.8306-8317.
18 Ramsey W.H. On the densities of methane, metallic ammonium, water and neon at planetary pressures // Mon. Not. Royal Astr. Soc. – 1963. – Vol. 125. – P.469-185.
19 Nijman A. J., Berlinsky A. J. Theory of Nuclear Spin Conversion in the β Phase of Solid Methane // Phys. Rev. Lett. – 1977. – Vol. 38, No 8. – P. 408.
20 Nijman A. J., Berlinsky A. J. Theory of nuclear spin conversion in the β phase of solid CH4 // Can. Jour. of Phys. – 1980. – Vol. 58, No 8. – P.1049-1069.
21 Pearl J., Ngoh N., Ospina M., Khanna R. Optical Constants of Solid Methane and Ethane from 10,000 to 450 cm-1 // J. Geophys.Res. – 1991. Vol. 96, No 17. – P.477.
22 Costantino M.S., Daniels W.B. Dielectric Constant of Compressed Solid Methane at Low Temperature. // J. Chem. Phys. – 1975. Vol. 62. – P.764.
23 Roux J.A.,Wood B.E, Smith A.M., Plyler R.R. Infrared Optical Properties of Thin CO, NO, CH4, HC1, N20, 02, N2, Ar, and Air Cryofilms. // Arnold Engineering Development Center Tech. Rep. AEDC- TR-79-81. – 1979. Vol. NTIS accession number AD A088269.
24 Bouilloud M., Fray N., Benilan Y., Cottin H., Gazeau M.C., Jolly A. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. // Monthly notices of the Royal Astronomical Society. – 2015. Vol.451, No 2.
25 Brunetto R, Caniglia G, Baratta G. A., Palumbo M. E. Integrated near-infrared band strengths of solid CH4 and its mixtures with N2. // The Astrophysical Journal. – 2008. – No. 686:1480Y1485.
26 Satorre M.A., Domingo M., Millan C., Luna R., Vilaplana R., Santonja C. Density of CH4, N2 and CO2 ices at different temperatures of deposition. // Planetary and Space Science. -2008. – Vol. 56, No 1748–1752.
27 Gerakines Perry A., Hudson Reggie L. Infrared spectra and optical constants of elusive amorphous methane. // Astrophysical Journal Letters. – 2015. Vol.2 , No 805. – P. 5.
28 Domingo M., Luna R., Satorre M.A., Santonja C., Millán C. Experimental Measurement of Carbon Dioxide Polarizability in the Solid State. // Journal of Low Temperature Physics. – 2015. – Vol. 181, No 1. – P.1-9.
29 Wood B. E., Roux J. A. Infrared optical properties of thin H20, NH3, and CO2 Cryofilms. // J. Opt. Soc. Am. – 1982. – Vol. 72, No 6.
30 Drobyshev A.S., Garipogly D.N. Cryocrystals CO2 and N-2: Growth rate, refractivity and IR reflection spectra. // Fizika nizkikh temperatur. 1996. Vol. 22(7). – P.814-818.
31 Drobyshev A.S., Atapina N.V. and at al. IR-spectrum and structure of water-vapor cryocondensates . // Fizika nizkikh temperatue. – 1993. – Vol. 19 (5). – P. 567-569.


References
1 K. Clusius, Journal of Physical Chemistry, 3, 41, (1929).
2 H.M. James, T.A. Keenan, Journal of Physical Chemistry, 31, 12, (1959).
3 J.H. Colwell, E.K. Gill, J.A. Morrison, Journal of Physical Chemistry, 39, 653, (1973).
4 J.A. Kruis, L. Popp and K. Clusius, Z. Elektrochem, 43(8), 664-666, (1937).
5 E. Bartholome, G. Drikos, A. Eucken, Journal of Physical Chemistry, B39, 371, (1938).
6 A. Prokhvatilov, A. Isakina, Fizika nizkikh temperatur, 9(4), 419, (1983).
7 D.R. Baer, B.A. Fraass, D.H. Riehl, R.O. Simmons, Journal of Physical Chemistry, 68(4), 1411, (1978).
8 A.J. Nijman, N.J. Trappeniers, Physica, 95B, 147, (1978).
9 P.A. Beckman, M. Bloom, I. Ozier, Can. Jour. of Phys., 54(16), 1712-1727, (1976).
10 S. Buchman, D. Candela, W. Vetterling, R. Pound, Phys. Rev., B26, 1459, (1982).
11 C. Chapados, A. Cabana, Can. Jour. of Chem., 50, 3521, (1970).
12 Y. Miyamoto, M. Fushitani, D. Ando, T. Momose, J. of Chem. Phys., 128, 114502, (2008).
13 M. Bagatskii, D. Mashchenko, V. Dudkin, Fizika nizkikh temperature, 33(6/7), 728-734, (2007).
14 M.I. Bagatskii, V.G. Manzhelii, I.Ya. Minchina, D.A. Mashchenko, I.A. Gospodarev, Jour. of Low Temp. Phys., 130(5-6), P. 459-475, (2003).
15 E.Pisarska, P.Stachwiak, A.Jezowski, Fizika nizkikh temperatur, 33(6/7), 768-771, (2007).
16 V.G. Manzheliiand, A.M. Tolkachev, Sov. Phys. Solid State, 5, 2506, (1964).
17 J. Martonchik, G. Orton, Applied Optics, 33(36), 8306-8317, (1994).
18 W.H. Ramsey, Mon. Not. Royal Astr. Soc., 125, 469-185, (1963).
19 A.J. Nijman, A.J. Berlinsky, Phys. Rev. Lett., 38(8), 408, (1977).
20 A.J. Nijman, A.J. Berlinsky, Can. Jour. of Phys., 58(8), 1049-1069, (1980).
21 A.J. Nijman, A.J. Berlinsky, R.Khanna, J. Geophys.Res., 96(17), 477, (1991).
22 M.S. Costantino, W.B., J. Chem. Phys., 62, 764, (1975).
23 J.A. Roux, B.E. Wood, A.M. Smith, R.R., Arnold Engineering Development Center Tech. Rep. AEDC- TR-79-81, Vol. NTIS accession number AD A088269, (1979).
24 M. Bouilloud, N. Fray, Y. Benilan, H. Cottin, M.C. Gazeau, A.Jolly, Monthly notices of the Royal Astronomical Society, 451(2), (2015).
25 R. Brunetto, G. Caniglia, G.A. Baratta, M.E. Palumbo, The Astrophysical Journal, 686:1480Y1485, (2008).
26 M.A. Satorre, M. Domingo, C. Millan, R. Luna, R. Vilaplana, C. Santonja, Planetary and Space Science, 56, 1748–1752, (2008).
27 P.A. Gerakines, R.L. Hudson, Astrophysical Journal Letters, 2(805), 5, (2015).
28 M. Domingo, R. Luna, M.A. Satorre, C. Santonja, C. Millán, Journal of Low Temperature Physics, 181(1), 1-9, (2015).
29 B.E. Wood, J.A., J. Opt. Soc. Am., 72(6), (1982).
30 A.S. Drobyshev, D.N. Garipogly, Fizika nizkikh temperatur, 22(7), 814-818, (1996).
31 A.S. Drobyshev, N.V. Atapina and at al., Fizika nizkikh temperatur, 19(5), 567-569, (1993).

Загрузки

Опубликован

2018-03-29

Выпуск

Раздел

Физика конденсированного состояния и проблемы материаловедения. Нанонаука